首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate that graphite powder and multiwalled carbon nanotubes (MWCNTs) can be derivatised by 4-nitrobenzylamine (4-NBA) simply by stirring the graphite powder or MWCNTs in a solution of acetonitrile containing 10 mM 4-NBA. We propose that 4-NBA partially intercalates at localised edge-plane or edge-plane-like defect sites and this hypothesis with a range of experimental data provided by electrochemistry in both aqueous and nonaqueous media, electron microscopy and X-ray powder diffraction.  相似文献   

2.
In this work, the interrelation between the anti‐reflective property and the component, especially the sp2 content, was studied. The results showed that the refraction index n increased from 2.2 to 3.3 with the direct current negative bias increasing. The reflection result R successful fall by 11.9% because of the existence of hydrogenated amorphous carbon anti‐reflective coatings. Both the refraction index and reflectivity decreasing correspond to a more graphitic microstructure character. Moreover, the optical property evolution of the films was explained by the chemical vapor deposition mechanism based on the ion sub‐plantation model and two‐phase model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The effects of pristine and amino‐functionalized multiwalled carbon nanotubes (MWNTs) on the crystallization behaviors of nylon‐6 were investigated by differential scanning calorimetry and X‐ray diffraction. The results indicate the presence of polymorphism in nylon‐6 and its composites, which is dependent on the MWNTs concentration and the cooling rate. More MWNTs and slow cooling from the melt favors the formation of α crystalline form. With the increase in cooling rates, the crystallinity of neat nylon‐6 decreases, and that of the composites decreases initially but increases afterward. Moreover, the degree of crystallinity of the composites is higher than neat nylon‐6 under high cooling rates, counter to what is observed under low cooling rates. The heterogeneous nucleation induced by MWNTs and the restricted mobility of polymer chains are considered as the main factors. Furthermore, addition of MWNTs increases the crystallization rate of α crystalline form but amino‐functionalization of MWNTs weakens this effect. The influence of thermal treatment on the crystalline structure of MWNTs/nylon‐6 composites is also discussed. A γ–α phase transition takes place at lower temperature for MWNTs/nylon‐6 composites than for nylon‐6. The annealing peaks of the composites annealed at 160 °C are higher than that of neat nylon‐6, and the highest annealing peak is obtained for amino‐functionalized MWNTs/nylon‐6 composites. This phenomenon is closely related to the different nucleation and recrystallization behaviors produced by various MWNTs in confined space. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1499–1512, 2006  相似文献   

4.
A simple and unique strategy for preparation of large‐compound vesicle (LCV)‐encapsulated multiwalled carbon nanotubes (MWCNTs) has been developed, and this involves dispersion of MWCNTs in H‐shaped copolymers solution in DMF and encapsulation of MWCNTs with LCVs formed from hydrolysis and polycondensation of ? Si(OCH3)3 groups in the amphiphilic H‐shaped copolymers, (PTMSPMA)2PEG(PTMSPMA)2. This unique noncovalent approach is nondestructive, and the original structure of MWCNTs remains in the resultant MWCNTs/LCVs nanocomposites. The morphologies of nanocomposites LCVs/MWCNTs are controlled by the chain length ratio (NPTMSPMA/NPEG) of PTMSPMA to PEG. For the H‐shaped copolymers with NPMSPMA/NPEG ≤ 1.7, they self‐assembled to form LCVs with dense cavities in the presence of MWCNTs in a mixture of DMF/H2O. When this ratio was more than 2.0, the large‐compound micelle‐wrapped MWCNTs were produced. This approach is potentially useful for preparation of MWCNTs encapsulated with various morphologies of polymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3669–3679, 2009  相似文献   

5.
A sensitive method for the determination of six varying polarity pesticides (imidacloprid, acetamiprid, carbendazim, simazine, linuron, and tebufenozide) based on a solid‐phase extraction disk with multiwalled nanotubes is proposed.A dispersion of multiwalled nanotubes in a surfactant aqueous solution (Triton X‐100) was used for the preparation of the solid‐phase extraction disk. The effect of surfactant on the functional groups of multiwalled nanotubes was examined by applying temperature‐programmed desorption. It was found that this treatment increased the amount of oxygen groups of treated multiwalled nanotubes comparing with untreated ones. The factors that may influence the adsorption and recovery such as the kind and volume of eluent, volume, flow rate and pH of sample were investigated and optimized. Under the optimized conditions, the maximal enrichment factors for low polar pesticides are ranging from 4000 to 4985 and for more polar are 2250 and 2750. The linear range of calibration curves was 10–500 ng/L with correlation coefficient higher than 0.9960, and the detection limit was 6.2–23.7 ng/L. Finally optimized method was applied for determination trace level of five out of six pesticides in tap and river water samples with good recovery.  相似文献   

6.
Multiwalled carbon nanotubes (MWCNTs) were oxidized using four different acid‐treatment methods followed by their functionalization with 3‐aminopropyltriethoxysilane (3‐APTES). Diglycidyl ether of bisphenol A (DGEBA) nanocomposites with unmodified and silanized MWCNTs (0.2 wt %) were prepared by a cast molding method. The effect of functionalization of MWCNTs on thermal, flexural, and morphological properties of the epoxy nanocomposites were studied. The epoxy/MWCNTs nanocomposites were characterized by thermogravimetric analysis, flexural testing, and field emission electron microscopic analysis. The results showed that the silanization of MWCNTs which were oxidized by a two‐step process using nitric acid and hydrochloric acid showed better thermal and flexural properties due to good interfacial adhesion between MWCNTs and the epoxy matrix. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1175–1184, 2010  相似文献   

7.
Polystyrene‐grafted multiwalled carbon nanotubes (PS‐g‐MWNTs) with a hairy‐rod nanostructure were synthesized by the in situ free‐radical polymerization of styrene in the presence of multiwalled carbon nanotubes (MWNTs) terminated with vinyl groups. To quantitatively study the molecular weight and composition of polystyrene (PS) chains in PS‐g‐MWNTs, PS‐g‐MWNTs were fully defunctionalized by hydrolysis. The results showed that 1 of every 100 carbon atoms in MWNTs was functionalized at the tips and outer walls of the carbon nanotubes and grafted by PS with a weight‐average molecular weight of 9800 g/mol; therefore, a uniform thin layer (ca. 8–10 nm) of a PS shell was formed on the outer wall of MWNTs. PS‐g‐MWNTs were soluble in dimethylformamide and tetrahydrofuran. The thermal stability and glass‐transition temperature of PS in PS‐g‐MWNTs were obviously increased. Nanopins were formed on the glass substrates by the self‐assembly of PS‐g‐MWNTs, and the dewetting effect between the glass substrate and PS chains covered MWNTs during the evaporation of the solution. Both the length and diameter of the nanopins increased with the solution concentration. When PS‐g‐MWNTs were compression‐molded, MWNTs were dispersed uniformly in the PS matrix and formed good networks, such as circlelike and starlike structures, because of the entanglements of hairy PS chains on MWNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3869–3881, 2006  相似文献   

8.
In this work, dodecylamine‐modified graphene nanosheets (DA‐GNSs) and γ‐aminopropyl‐triethoxysilane‐treated multiwalled carbon nanotubes (f‐MWCNTs) are employed to prepare cyanate ester (CE) thermally conductive composites. By adding 5 wt% DA‐GNSs or f‐MWCNTs to the CE resin, the thermal conductivities of the composites became 3.2 and 2.5 times that of the CE resin, respectively. To further improve the thermal conductivity, a mixture of the two fillers was utilized. A remarkable synergetic effect between the DA‐GNSs and f‐MWCNTs on improving the thermal conductivity of CE resin composites was demonstrated. The composite containing 3 wt% hybrid filler exhibited a 185% increase in thermal conductivity compared with pure CE resin, whereas composites with individual DA‐GNSs and f‐MWCNTs exhibited increases of 158 and 108%, respectively. Moreover, the composite with hybrid filler retained high electrical resistivity. Scanning electron microscopy images of the composite morphologies showed that the modified graphene nanosheets (GNSs) and multiwalled carbon nanotubes (MWCNTs) were uniformly dispersed in the CE matrix, and a number of junction points among MWCNTs and between MWCNTs and GNSs formed in the composites with hybrid fillers. Generally, we can conclude that these composites filled with hybrid fillers may be promising materials of further improving the thermal conductivity of CE composites. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
In the present work, the crystalline structures and the melting behaviors of poly(L ‐lactide) (PLLA) obtained after being annealed at different conditions have been investigated through differential scanning calorimetry and wide‐angle X‐ray diffraction, respectively. To improve the crystallization of PLLA, functionalized multiwalled carbon nanotubes (f‐MWCNTs) are introduced into PLLA. Our results show that by prolonging the annealing duration or enhancing the annealing temperature, the degree of crystallinity of PLLA gradually increases. Very important, the addition of f‐MWCNTs promotes the cold‐crystallization of PLLA dramatically even at relatively lower annealing temperature or in shorter annealing duration. Further results show that, whether in neat PLLA or in PLLA/f‐MWCNTs nanocomposite, only α form crystal forms during the annealing process. The glass transition temperature shifts to high temperatures because of the increase of crystallinity. F‐MWCNTs exhibit great heterogeneous nucleation effect for PLLA crystallization through enhancing the nucleation density, leading to homogeneous and tiny spherulites formation in a very short time. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 326–339, 2009  相似文献   

10.
Understanding of oxidative processes such as solution-phase ozonolysis in multiwalled carbon nanotubes (MWNTs) is of fundamental importance in devising applications of these tubes as components in composite materials, as well as for development of cutting and filling protocols. We present here an evaluation of various spectroscopic tools to study the structure and composition of functionalized nanotubes. We demonstrate near-edge X-ray absorption fine structure (NEXAFS) spectroscopy as a particularly useful and effective technique for studying the surface chemistry of carbon nanotubes.  相似文献   

11.
Immiscible polypropylene/ethylene‐co‐vinyl acetate (PP/EVA) blends with two different compositions, one (PP/EVA = 80/20) exhibits the typical sea‐island morphology and the other (PP/EVA = 60/40) exhibits the cocontinuous morphology, were prepared with different contents of f‐MWCNTs. The fracture behaviors, including notched Izod impact fracture and single‐edge notched tensile (SENT) fracture, were comparatively studied to establish the role of f‐MWCNTs in influencing the fracture toughness of PP/EVA blends. Our results showed that, for PP/EVA (80/20) system, f‐MWCNTs do not induce the fracture behavior change apparently. However, for PP/EVA (60/40) system, the fracture toughness of the blend increases dramatically with the increasing of f‐MWCNTs content. More severe plastic deformation accompanied by the fibrillar structure formation was observed during the SENT test. Furthermore, SENT test shows that the significant improvement in fracture toughness of PP/EVA (60/40) with f‐MWCNTs is contributed to the simultaneous enhancement of crack initiation energy and crack propagation energy, but largely dominated by crack propagation stage. Further results based on crystalline structures and morphologies of the blends showed that a so‐called dual‐network structure of EVA and f‐MWCNTs forms in cocontinuous PP/EVA blends, which is thought to be the main reason for the largely improved fracture toughness of the sample. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1331–1344, 2009  相似文献   

12.
《先进技术聚合物》2018,29(6):1753-1764
A series of polycarbonate (PC)/multiwalled carbon nanotubes (CNT) nanocomposites were prepared by diluting a commercially available masterbatch using a neat PC resin in a lab‐scale batch mixer. The obtained nanocomposites were subjected to microinjection molding to fabricate microparts, which have a 3‐step decrease in thickness along the flow direction, under a defined set of processing conditions. The obtained microparts were mechanically divided into 3 different sections, namely, thick, middle, and thin sections, based on thickness. Morphology observations and electrical conductivity measurements were conducted to explore the evolution of microstructure within subsequent microparts. Additionally, a comparison of the electrical and morphological properties of stepped microparts of various thermoplastic polymers filled with CNT was studied. Results suggested that the selection of host polymers influences the dispersion of nanotubes within subsequent moldings, thereby affecting the electrical properties. The thermal stability of subsequent moldings deteriorated upon the addition of CNT, suggesting that the addition of CNT and the thermomechanical history experienced by the polymer melts in microinjection molding might cause a chain scission effect on PC. Raman spectroscopy analysis was used to study the orientation and properties of CNT in microparts.  相似文献   

13.
Covalent functionalization of alkyne‐decorated multiwalled carbon nanotubes (MWNTs) with a well‐defined, azide‐derivatized, thermoresponsive diblock copolymer, poly(N,N‐dimethylacrylamide)‐poly(N‐isopropylacrylamide) (PDMA‐PNIPAM) was accomplished by the Cu(I)‐catalyzed [3 + 2] Huisgen cycloaddition. It was found that this reaction could simultaneously increase the molecular size and bonding density of grafted polymers when PDMA‐PNIPAM micelles were employed in the coupling system. On the other hand, attachment of molecularly dissolved unimers of high‐molecular weight onto the nanotube resulted in low‐graft density. The block copolymer bearing azide groups at the PDMA end was prepared by reversible addition–fragmentation transfer polymerization, which formed micelles with a diameter of ~40 nm at temperatures above its critical micelle temperature. Scanning electron microscopy was utilized to demonstrate that the coupling reaction was successfully carried out between copolymer micelles and alkyne‐bearing MWNTs. FTIR spectroscopy was utilized to follow the introduction and consumption of alkyne groups on the MWNTs. Thermogravimetric analysis indicated that the functionalized MWNTs consisted of about 45% polymer. Transmission electron microscopy was utilized to image polymer‐functionalized MWNTs, showing relatively uniform polymer coatings present on the surface of nanotubes. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7187–7199, 2008  相似文献   

14.
Single‐walled carbon nanotubes (SWNTs) synthesized with different methods are investigated by using multiple characterization techniques, including Raman scattering, optical absorption, and X‐ray absorption near edge structure, along with X‐ray photoemission by following the total valence bands and C 1s core‐level spectra. Four different SWNT materials (produced by arc discharge, HiPco, laser ablation, and CoMoCat methods) contain nanotubes with diameters ranging from 0.7 to 2.8 nm. The diameter distribution and the composition of metallic and semiconducting tubes of the SWNT materials are strongly affected by the synthesis method. Similar sp2 hybridization of carbon in the oxygenated SWNT structure can be found, but different surface functionalities are introduced while the tubes are processed. All the SWNTs demonstrate stronger plasmon resonance excitations and lower electron binding energy than graphite and multiwalled carbon nanotubes. These SWNT materials also exhibit different valence‐band X‐ray photoemission features, which are considerably affected by the nanotube diameter distribution and metallic/semiconducting composition.  相似文献   

15.
Oxygen‐related surface functional groups on diamond‐like carbon (DLC) films were derivatized with fluorine‐ and nitrogen‐related groups by the gas‐phase chemical derivatization (GCD) method, and the groups were analyzed quantitatively by X‐ray photoelectron spectroscopy (XPS). It is desirable that a derivatization reaction is unique to the target group; however, it usually causes undesirable side reactions which affect other groups. This diversity of the reactions has complicated the analysis. In this report, we have overcome the problem by applying a mathematical treatment which takes the side reactions into account. This improved analysis shows that it is no longer necessary to have derivatization reactions unique to the target groups. As a result, it is demonstrated that the carbonyl (C?O) group is the dominant surface functional group on both the DLC and its wet‐oxidized films, the carboxyl (COOH) group plays a minor role, and the presence of the hydroxyl (OH) group is logically denied. Considering the oxidation steps of these oxygen‐related surface functional groups, it is suggested that the C?O group on the DLC films requires the cleavage of the carbon–carbon bond with a relatively high activation energy barrier to change into the COOH group. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A new soluble multiwalled carbon nanotubes (MWNTs) covalently functionalized with conjugated polymer PCBF, in which the wt % of MWNTs is approximately calculated as 7.3%, and the average thickness of PCBF covalently grafted onto MWNTs is 10.4 nm, was synthesized by an amidation reaction. In contrast to the starting polymer PCBF‐NH2, grafting of PCBF onto MWNTs led to a 0.3 eV red‐shift of the N1s XPS peak at 399.7 eV assigning to N in the unreacted NH2moieties in the resulting copolymer structure and an appearance of new peak at 402 eV corresponding to N bound to the carbonyl C (i.e., NH? C?O). Unlike PCBF‐NH2, which only displayed a weak optical limiting response at 532 nm, Z‐scan for MWNT‐PCBF exhibited a much broader reduction in transmission and a scattering accompanying on the focus of the lens at both 532 and 1064 nm, indicating a prominent broadband optical limiting response. The thermally induced nonlinear scattering is responsible for the optical limiting. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
通过酰胺化反应在多壁碳纳米管(MWNTs)表面接枝双键,以L-组氨酸(L-His)为模板,甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,偶氮二异丁腈(AIBN)为引发剂,利用表面印迹技术,在MWNTs表面制备印迹聚合物(MWNTs-MIPs).采用红外光谱,扫描电子显微镜和热重分析表征印迹聚合物的性质,结果表明MWNTs表面成功接枝了一层稳定的、厚度为35~40nm具有识别能力的印迹聚合材料.结合高效液相色谱技术,通过填充色谱柱在线色谱分析,探讨不同pH值的流动相下该印迹材料对L-His的分离行为,结果表明MWNTs—MIPs色谱柱在流动相pH=7.0时分离效果最好,能够选择性地识别L-His和D-His,分离度R为1.78,选择因子α为1.28.  相似文献   

18.
The nitroxide‐mediated radical polymerization of styrene was carried out on the surfaces of multiwalled carbon nanotubes (MWNTs) initiated by an MWNT‐supported initiator multiwalled carbon nanotube–2″,2″,6″,6″‐tetramethylpiperidinyloxy (MWNT–Tempo). The content of polystyrene grafted from the surface was controlled by changes in the polymerization conditions, such as the reaction times or the ratios of monomers to initiators. The obtained polystyrene‐grafted multiwalled carbon nanotubes (MWNT–PSs) were further used to initiate the polymerization of 4‐vinylpyridine to get polystyrene‐b‐poly(4‐vinylpyridine)‐grafted multiwalled carbon nanotubes (MWNT–PS‐b‐P4VPs). In contrast to unmodified MWNTs, MWNT–PSs had relatively good dispersibility in various organic solvents, such as tetrahydrofuran, CHCL3, and o‐dichlorobenzene. The structures and properties of MWNT–PSs and MWNT–PS‐b‐P4VPs were characterized and studied with several methods, including thermogravimetric analysis, Fourier transform infrared, ultraviolet–visible, and transmission electron microscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4656–4667, 2006  相似文献   

19.
A microdispersive solid‐phase extraction method has been developed using multiwalled carbon nanotubes of 110–170 nm diameter and 5–9 μm length for the extraction of a group of nine phthalic acid esters (i.e., bis(2‐methoxyethyl) phthalate, bis‐2‐ethoxyethyl phthalate, dipropyl phthalate, butylbenzyl phthalate, bis‐2‐n‐butoxyethyl phthalate, bis‐isopentyl phthalate, bis‐n‐pentyl phthalate, dicyclohexyl phthalate, and di‐n‐octyl phthalate) from tap water as well as from different beverages commercialized in plastic bottles (mineral water, lemon‐ and apple‐flavored mineral water, and an isotonic drink). Determination was carried out by high‐performance liquid chromatography coupled to mass spectrometry. The extraction procedure was optimized following a step‐by‐step approach, being the optimum extraction conditions: 50 mL of each sample at pH 6.0, 80 mg of sorbent, and 25 mL of acetonitrile as elution solvent. To validate the methodology, matrix‐matched calibration and a recovery study were developed, obtaining determination coefficients >0.9906 and absolute recovery values between 70 and 117% (with relative standard deviations < 17%) in all cases. The limits of quantification of the method were between 0.173 and 1.45 μg/L. After the evaluation of the matrix effects, real samples were also analyzed, finding butylbenzyl phthalate in all samples (except in apple‐flavored mineral water), though at concentrations below its limit of quantification of the method.  相似文献   

20.
Hybrid carbon–alumina supports, synthesised by pyrolysis of grafted 4,4′‐methylenebis‐(phenylisocyanate) moiety on the alumina surface, were characterised by X‐ray photoelectron spectroscopy. The recorded Al 2p and C 1s envelopes showed asymmetry that decreased with an increase in carbon loading. In all experimental Al 2p envelopes, the high‐energy individual components at 75.3–75.9 eV were present along with the low‐energy component at 74.0 eV typical for Al2O3. In the case of the C 1s envelope, the component around 284.3–284.4 eV and three high‐energy individual components at 285.9–286.0, 288.0–288.3 and 290.1–290.6 eV were observed. The presence of the high‐energy Al 2p components can be explained considering the occurrence of a steady‐state charging of the different parts of insulating alumina supports. The component around 284.3–284.4 eV in C 1s envelopes can be attributed to carbon, which constitutes the coating and, hence, ensures surface conductivity. The component around 285.9–286.0 eV is connected with carbon in carbonaceous surface species, which do not form the conducting layer on the alumina support. Carbonaceous surface species associated with C? O, C?O and O?C? O groups in carbon coating can be also identified due to the presence of corresponding components in XPS spectra at 285.9–286.0, 288.0–288.3 and 290.1–290.6 eV. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号