首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two polymorphic hydrogen peroxide solvates of 2,4,6,8,10,12‐hexanitro‐2,4,6,8,10,12‐hexaazaisowurtzitane (CL‐20; wurtzitane is an alternative name to iceane) were obtained using hydrated α‐CL‐20 as a guide. These novel H2O2 solvates have high crystallographic densities (1.96 and 2.03 g cm?3, respectively), high predicted detonation velocities/pressures (with one solvate performing better than ?‐CL‐20), and a sensitivity similar to that of ?‐CL‐20. The use of hydrated materials as a guide will be important in the development of other energetic materials with hydrogen peroxide. These solvates represent an area of energetic materials that has yet to be explored.  相似文献   

2.
The structure, band gap, thermodynamic properties and detonation properties of methyl, amino, nitro, and nitroso substituted 3,4,5-trinitropyrazole-2-oxides are explored using density functional theory at the B3LYP/aug-cc-pVDZ level. It is found that the NH2 or CH3 group substitution for the acidic proton at the N4 position of trinitropyrazole-2-oxide (P20) decreases the heat of detonation and crystal density. The density (2.20–2.50 g/cm3), detonation velocity (10.20–10.92 km/s), and detonation pressure (52.30–59.84 GPa) of the title compounds are higher compared with 1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), and octanitrocubane (ONC).  相似文献   

3.
A series of new high-energy insensitive compounds were designed based on 1,3,5-trinitro-1,3,5-triazinane (RDX) skeleton through incorporating -N(NO2)-CH2-N(NO2)-, -N(NH2)-, -N(NO2)-, and -O- linkages. Then, their electronic structures, heats of formation, detonation properties, and impact sensitivities were analyzed and predicted using DFT. The types of intermolecular interactions between their bimolecular assemble were analyzed. The thermal decomposition of one compound with excellent performance was studied through ab initio molecular dynamics simulations. All the designed compounds exhibit excellent detonation properties superior to 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), and lower impact sensitivity than CL-20. Thus, they may be viewed as promising candidates for high energy density compounds. Overall, our design strategy that the construction of bicyclic or cage compounds based on the RDX framework through incorporating the intermolecular linkages is very beneficial for developing novel energetic compounds with excellent detonation performance and low sensitivity.  相似文献   

4.
One route to high density and high performance energetic materials based on 1,2,4,5‐tetrazine is the introduction of 2,4‐di‐N‐oxide functionalities. Based on several examples and through theoretical analysis, the strategy of regioselective introduction of these moieties into 1,2,4,5‐tetrazines has been developed. Using this methodology, various new tetrazine structures containing the N‐oxide functionality were synthesized and fully characterized using IR, NMR, and mass spectroscopy, elemental analysis, and single‐crystal X‐ray analysis. Hydrogen peroxide (50 %) was used very effectively in lieu of the usual 90 % peroxide in this system to generate N‐oxide tetrazine compounds successfully. Comparison of the experimental densities of N‐oxide 1,2,4,5‐tetrazine compounds with their 1,2,4,5‐tetrazine precursors shows that introducing the N‐oxide functionality is a highly effective and feasible method to enhance the density of these materials. The heats of formation for all compounds were calculated with Gaussian 03 (revision D.01) and these values were combined with measured densities to calculate detonation pressures (P) and velocities (νD) of these energetic materials (Explo 5.0 v. 6.01). The new oxygen‐containing tetrazines exhibit high density, good thermal stability, acceptable oxygen balance, positive heat of formation, and excellent detonation properties, which, in some cases, are superior to those of 1,3,5‐tritnitrotoluene (TNT), 1,3,5‐trinitrotriazacyclohexane (RDX), and octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX).  相似文献   

5.
We designed a new family of pentazole‐based high energy density compounds with oxygen balance equal to zero by introducing −NH2, −NO2, −N3, −CF2NF2, and −C[NO2]3, and the properties including density, heats of formation, detonation performances, and impact sensitivity were investigated using density functional theory. The results show that half of these new energetic molecules exhibit higher densities than RDX (1.82 g/cm3), in which H5 gives the highest density of 2.09 g/cm3. Among all the 54 designed molecules, 22 compounds have higher D and P than RDX and eleven compounds have higher D and P than HMX, indicating that designing the pentazole‐based derivatives with oxygen balance equal to zero is a very effective way to obtain potential energetic compounds with outstanding detonation properties. Taking both the detonation performance and stability into consideration, nine compounds may be recognized as potential candidates of high energy density compounds. It is expected that our results will contribute to the theoretical design of new‐generation energetic explosives.  相似文献   

6.
Salts generated from linked 1,2,4‐oxadiazole/1,2,5‐oxadiazole precursors exhibit good to excellent thermal stability, density, and, in some cases, energetic performance. The design of these compounds was based on the assumption that by the combination of varying oxadiazole rings, it would be possible to profit from the positive aspects of each of the components. All of the new compounds were fully characterized by elemental analysis, IR spectroscopy, 1H, 13C, and (in some cases) 15N NMR spectroscopy, and thermal analysis (DSC). The structures of 2 – 3 and 5 ‐ 1 ?5 H2O were confirmed by single‐crystal X‐ray analysis. Theoretical performance calculations were carried out by using Gaussian 03 (Revision D.01). Compound 2 ‐ 3 , with its good density (1.85 g cm?3), acceptable sensitivity (14 J, 160 N), and superior detonation pressure (37.4 GPa) and velocity (9046 m s?1), exhibits performance properties superior to those of 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX).  相似文献   

7.
In recent years, cocrystallization has emerged as an effective way of tuning the properties of compounds and has been widely used in the field of energetic materials. In this study, we have prepared two novel cocrystals of CL‐20 and methylimidazole, including a 1:2 CL‐20 / 2‐mercapto‐1‐methylimidazole ( 1 ) and a 1:4 CL‐20 / 4‐methyl‐5‐nitroimidazole ( 2 ). Cocrystal 1 has good physical and detonation properties (ρ1 = 1.652 g · cm–3, D1 = 7073 m · s–1, P1 = 21.6 GPa); however, cocrystal 2 shows higher properties (ρ2 = 1.680 g · cm–3, D2 = 7945 m · s–1, P2 = 27.4 GPa). The performance of both cocrystals is better than those of TNT. Thermal performance suggests that both the cocrystals have moderate thermal stabilities. Cocrystal 1 decomposes at 164.9 °C and cocrystal 2 has an exothermic peak at 221 °C. Both cocrystals are insensitive energetic explosives (IS > 40 J, FS > 360 N). Methylimidazole compounds are rarely used as coformers to form cocrystals with CL‐20, which possess good properties for a range of potential applications. Herein, we provide new possible directions for enriching cocrystal speciation.  相似文献   

8.
Theoretically new high‐energy‐density materials (HEDM) in which the hydrogens on RDX and β‐HMX (hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine and octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine, respectively) were sequentially replaced by (N NO2)x functional groups were designed and evaluated using density functional theory calculations in combination with the Kamlet–Jacobs equations and an atoms‐in‐molecules (AIM) analysis. Improved detonation properties and reduced sensitivity compared to RDX and β‐HMX were predicted. Interestingly, the RDX and β‐HMX derivatives having one attached N NO2 group [RDX‐(NNO2)1 and HMX‐(NNO2)1] showed excellent detonation properties (detonation velocities: 9.529 and 9.575 km·s−1, and detonation pressures: 40.818 and 41.570 GPa, respectively), which were superior to the parent compounds. Sensitivity estimations obtained by calculating impact sensitivities and HOMO‐LUMO gaps indicated that RDX‐(NNO2)1 and HMX‐(NNO2)1 were less stable than RDX and HMX but more stable than any of the other derivatives. This method of sequential NNO2 group attachment on conventional HEDMs offers a firm basis for further studies on the design of new explosives. Furthermore, the newly found structures may be promising candidates for better HEDMs.  相似文献   

9.
Multi‐functionality compound 2,4,6,8,10,12‐hexa(p‐bromo)‐benzyl‐2,4,6,8,10,12‐hexaazaiso‐wurtzitane (Br‐HBIW) was synthesized and used for the core of star‐like polymers. Star‐like polyfluorene based on 2,4,6,8,10,12‐hexabenzyl‐2,4,6,8,10,12‐hexaazaisowurtzitane (HBIW) caged‐core was synthesized by Suzuki coupling method. The comparative studies between the star‐like polyfluorene and the linear polyfluorene based on UV–Vis and photoluminescence (PL) spectra revealed that the bulky HBIW cage could reduce the chain aggregation and ππ interaction, so brought about improved PL quantum efficiency and annealing PL stability. Such results could be owed to the successful suppression of excimers formation, which originated from the incorporation of the HBIW cage and star‐like architecture. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
High density energetic salts containing nitrogen‐rich cations and the nitranilic anion were readily synthesized in high yield by metathesis reactions of sodium nitranilate 2 and an appropriate halide. All of the new compounds were fully characterized by elemental, spectral (IR, 1H, 13C NMR), and thermal (DSC) analyses. The structure of hydrazinium nitranilate ( 4 ) was also determined by single‐crystal X‐ray analysis. The high symmetry and oxygen content of the anion give these salts extensive hydrogen bonding capability which further results in the high densities, low water solubilities, and high thermal stabilities (Td> 200 °C) of these compounds. Theoretical performance calculations were carried out by using Gaussian 03 and Cheetah 5.0. The calculated detonation pressures (P) for these new salts fall between 17.5 GPa ( 10 ) and 31.7 GPa ( 4 ), and the detonation velocities (νD) range between 7022 m s?1 ( 13 ) and 8638 m s?1 ( 4 ).  相似文献   

11.
The nitration of 5‐amino‐1H‐tetrazole ( 1 ), 5‐amino‐1‐methyl‐1H‐tetrazole ( 3 ), and 5‐amino‐2‐methyl‐2H‐tetrazole ( 4 ) with HNO3 (100%) was undertaken, and the corresponding products 5‐(nitrimino)‐1H‐tetrazole ( 2 ), 1‐methyl‐5‐(nitrimino)‐1H‐tetrazole ( 5 ), and 2‐methyl‐5‐(nitramino)‐2H‐tetrazole ( 6 ) were characterized comprehensively using vibrational (IR and Raman) spectroscopy, multinuclear (1H, 13C, 14N, and 15N) NMR spectroscopy, mass spectrometry, and elemental analysis. The molecular structures in the crystalline state were determined by single‐crystal X‐ray diffraction. The thermodynamic properties and thermal behavior were investigated by using differential scanning calorimetry (DSC), and the heats of formation were determined by bomb calorimetric measurements. Compounds 2, 5 , and 6 were all found to be endothermic compounds. The thermal decompositions were investigated by gas‐phase IR spectroscopy as well as DSC experiments. The heats of explosion, the detonation pressures, and velocities were calculated with the software EXPLO5, whereby the calculated values are similar to those of common explosives such as TNT and RDX. In addition, the sensitivities were tested by BAM methods (drophammer and friction) and correlated to the calculated electrostatic potentials. The explosion performance of 5 was investigated by Koenen steel sleeve test, whereby a higher explosion power compared to RDX was reached. Finally, the long‐term stabilities at higher temperatures were tested by thermal safety calorimetry (FlexyTSC). X‐Ray crystallography of monoclinic 2 and 6 , and orthorhombic 5 was performed.  相似文献   

12.
1, 1‐Diamino‐2, 2‐dinitroethylene (FOX‐7) has received increasing attention since it was industrialized in the late 1990s. It has lower sensitivity and comparable performance to RDX. This paper presents ballistic properties of FOX‐7, its mono and dinitro derivatives and their epoxide derivatives computationally. The structures were optimized at the B3LYP/6‐31G(d, p) level and the bond lengths were calculated. The calculated data for FOX‐7 are compatible with the literature one. We have investigated the bond dissociation energies of the molecules. Mulliken electro negativities (χM) and chemical hardness (η) were reviewed using Frontier Molecular Orbitals at HF/6‐31G(d, p)//B3LYP/6‐31G(d, p) theoretical level. The detonation performance analyses were done using empirical Kamlet‐Jacobs equations. Additionally, power index values were calculated. All the compounds considered in the present article are powerful candidates for high energy materials.  相似文献   

13.
Density functional theory method was used to study the heats of formation (HOFs), electronic structure, energetic properties, and thermal stability for a series of bridged ditetrazole derivatives with different linkages and substituent groups. The results show that the ? N3 group and azo bridge (? N?N? ) play a very important role in increasing the HOF values of the ditetrazole derivatives. The effects of the substituents on the HOMO–LUMO gap are combined with those of the bridge groups. The calculated detonation velocities and detonation pressures indicate that the ? NO2, ? NF2, ? N?N? , or ? N(O)?N? group is an effective structural unit for enhancing the detonation performance for the derivatives. An analysis of the bond dissociation energies for several relatively weak bonds suggests that the N? N bond in the ring or outside the ring is the weakest one and the N? N cleavage is possible to happen in thermal decomposition. Overall, the ? CH2? CH2? or ? NH? NH? group is an effective bridge for enhancing the thermal stability of the bridged ditetrazoles. Because of their desirable detonation performance and thermal stability, five compounds may be considered as the potential candidates of high‐energy density materials (HEDMs). These results provide basic information for the molecular design of novel HEDMs. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

14.
《化学:亚洲杂志》2017,12(24):3141-3149
Constructing insensitive high‐performance energetic coordination polymers (ECPs) with alkali/alkali‐earth metal ions and a nitrogen‐rich organic backbone has been proved to be a feasible strategy in this work. Six diverse dimensional novel ECPs (compounds 1 – 6 ) were successfully synthesized from NaI, CsI, CaII, SrII, BaII ions and a nitrogen‐rich triheterocyclic 4,5‐bis(tetrazol‐5‐yl)‐2 H ‐1,2,3‐triazole (H3BTT). All compounds show outstanding stability and low sensitivity, the thermal stability of these ECPs are significantly improved as the structural reinforcement increases from 1D to 3D, in which the decomposition temperature of 3D BaII based compound 6 is as high as 397 °C. Long‐term storage experiments show that compounds 5 and 6 are stable enough at high temperature. Moreover, the six compounds hold considerable detonation performances, in which CaII based compound 5 possesses the detonation velocity of 9.12 km s−1, along with the detonation pressure of 34.51 GPa, exceeding those of most energetic coordination polymers. Burn tests further certify that the six compounds can be versatile pyrotechnics.  相似文献   

15.
New derivatives of 1,1‐diamino‐2, 2‐dinitroethene (FOX‐7) are reported. These highly oxygen‐ and nitrogen‐rich compounds were fully characterized using IR and multinuclear NMR spectroscopy, elemental analysis (EA), and differential scanning calorimetry (DSC). X‐ray structure determination of (E)‐1,2‐bis{(E)‐2‐chloro‐1‐(chloroimino)‐2,2‐dinitroethyl}diazene) ( 10 ), N1, N2‐dichloro‐1, 2‐diazenedicarboximidamide ( 11 ), and (E,E)‐N,N′‐1,2‐ethanediylidenebis(2, 2‐dinitro‐2‐chloro‐ethanamine) ( 12 ) was helpful in their characterization. Heats of formation (HOF) were calculated (Gaussian 03) and combined with experimental densities to estimate the detonation velocities (D) and pressures (P) of the high‐energy‐density materials (HEDMs) (EXPLO5, v6.01). The compounds exhibit good thermal stability, high density, positive HOF, acceptable oxygen balances, and excellent detonation properties, which often are superior to that of 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX).  相似文献   

16.
The synthesis and energetic properties of a novel N‐oxide high‐nitrogen compound, 6‐amino‐tetrazolo[1,5‐b]‐1,2,4,5‐tetrazine‐7‐N‐oxide, are described. Resulting from the N‐oxide and fused rings system, this molecule exhibits high density, excellent detonation properties, and acceptable impact and friction sensitivities, which suggests potential applications as an energetic material. Compared to known high‐nitrogen compounds, such as 3,6‐diazido‐1,2,4,5‐tetrazine (DiAT), 2,4,6‐tri(azido)‐1,3,5‐triazine (TAT), and 4,4′,6,6′‐tetra(azido)azo‐1,3,5‐triazine (TAAT), a marked performance and stability increase is seen. This supports the superior qualities of this new compound and the advantage of design strategy.  相似文献   

17.
Diselenadiphosphetane Diselenides and Triselenadiphospholane Diselenides – Synthesis and Characterization by 31P and 77Se Solid‐State NMR Spectroscopy 1,3‐Diselena‐2,4‐diphosphetane‐2,4‐diselenides (RPSe2)2 with R = Me, Et, t‐Bu, Ph, 4‐Me2NC6H4, 4‐MeOC6H4 have been synthesized by different methods. The insoluble compounds were investigated by 31P and 77Se solid‐state NMR and the purity of the compounds has been checked by their CP MAS sideband NMR spectra. The structure of the investigated compounds has been confirmed by the isotropic and anisotropic values of the chemical shifts and the 1JP–Se coupling constants. In addition, two new 1,2,4‐triselena‐3,5‐diphospholane‐3,5‐diselenides, (RPSe2)2Se (R = Me, Et), formed under similar synthesis conditions, were investigated. Their structure was derived from the 77Se satellites of 31P solution spectra and from solid‐state spectra. For (t‐BuPSe2)2 the experimentally obtained principal values of phosphorus and selenium shielding tensors are compared with values from IGLO calculations (HF und SOS DFPT). The calculated orientations of the principal axes are discussed.  相似文献   

18.
A family of 4,4′,6,6′‐tetra(azido)azo‐1,3,5‐triazine‐N‐oxides was designed and investigated by theoretical method. The effects of the N→O bond on the properties of TAAT‐N‐oxides, such as density, heat of formation, and detonation performance, were discussed. By comparison with the bond‐dissociation energy of the weakest bond and the electrostatic potentials, the effects of the N→O bond on the stability and impact sensitivity of organic azides were also discussed. The results show that the introduction of N→O bonds at the appropriate positions increases the oxygen balance and density of the compounds, while it has little effect on the stability and impact sensitivity. Consequently, their introduction results in energetic compounds with improved detonation performances.  相似文献   

19.
Biotransformation is the structural modification of compounds using enzymes as the catalysts and it plays a key role in the synthesis of pharmaceutically important compounds. 10β,17β‐Dihydroxy‐17α‐methylestr‐4‐en‐3‐one dihydrate, C19H28O3·2H2O, was obtained from the fungal biotransformation of methyloestrenolone. The structure was refined using the classical independent atom model (IAM) and a transferred multipolar atom model using the ELMAM2 database. The results from the two refinements have been compared. The ELMAM2 refinement has been found to be superior in terms of the refinement statistics. It has been shown that certain electron‐density‐derived properties can be calculated on the basis of the transferred parameters for crystals which diffract to ordinary resolution.  相似文献   

20.
The synthesis, one‐ and two‐photon absorption (TPA) and emission properties of two novel 2,6‐anthracenevinylene‐based copolymers, poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinylene‐alt‐N‐octyl‐3,6‐carbazolevinyl‐ene] ( P1 ) and poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinyl‐ene‐alt‐N‐octyl‐2,7‐carbazolevinylene] ( P2 ) were reported. The as‐synthesized polymers have the number‐average molecular weights of 1.56 × 104 for P1 and 1.85 × 104 g mol?1 for P2 and are readily soluble in common organic solvents. They emit strong bluish‐green one‐ and two‐photon excitation fluorescence in dilute toluene solution (? P1 = 0.85, ? P2 = 0.78, λem( P1 ) = 491 nm, λem( P2 ) = 483 nm). The maximal TPA cross‐sections of P1 and P2 measured by the two‐photon‐induced fluorescence method using femtosecond laser pulses in toluene are 840 and 490 GM per repeating unit, respectively, which are obviously larger than that (210 GM) of poly[9,10‐bis‐(3,4‐bis(2‐ethylhexyloxy) phenyl)‐2,6‐anthracenevinylene], indicating that the poly(2,6‐anthracenevinylene) derivatives with large TPA cross‐sections can be obtained by inserting electron‐donating moieties into the polymer backbone. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 463–470, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号