首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A series of compounds of the formula Fe2(CO)6-x(PR3)x(R′C2R″)2 (x = 0, R′ and R″ = Ph, R′ and R″ = H, R′ = Ph and R″ = H; x = 1, K = Ph or n-Bu, and R′ and R″ = Ph) were studied by 13C NMR to observe their solution properties. The tricarbonylferrole unit was found to be static from ?125 to +95° C, while the π-Fe(CO)3 group appeared to be fluxional over the same temperature range. Definite assignments of the carbonyl carbon and ferrole ring carbon resonances have been made. A low temperature single crystal X-ray study of Fe2(CO)5PPh3(PhC2Ph)2 demonstrated that the phosphine ligand was attached to the ferrole iron contrary to previous belief based on chemical evidence.  相似文献   

2.
Reaction of equimolar amounts of [WI2(CO)3(NCMe)2] and norbornadiene (nbd) in toluene at 95 °C for 3h gave the 16‐electron crystallographically characterised complex, [WI2(CO)2(nbd)] (1) in 96 % yield. The structure of 1 has a distorted octahedral geometry, with the two cis‐ iodo ligands opposite to the two alkene groups in the equatorial plane, with the carbonyl groups in the axial sites. Treatment of 1 with two equivalents of PhC2Ph in CH2Cl2 at room temperature afforded the bis(alkyne) complex [WI2(CO)22—PhC2Ph)2] (2) . Equimolar quantities of 1 and 4, 4′‐bipyridine react in CH2Cl2 at room temperature to yield the seven‐coordinate complex, [WI2(CO)2(4, 4′‐bipyridine)(nbd)] (3) .  相似文献   

3.
The solid state13C NMR spectra of four13CO enriched carbonyl clusters having a tri-iron metallic core have been analyzed to provide structural and dynamic information. In Fe3(CO)12 (1), the high temperature spectra suggest the occurrence of large amplitude motions of the CO groups around their position at the vertexes of the coordination polyhedron in addition to the motion involving the Fe3-triangle previously detected in the VT-13C MAS spectra.13C and31P NMR data of Fe3(CO)11PPh3 (2) indicates the presence of one molecule in the asymmetric unit in apparent disagreement with the previously reported X-ray data. Furthermore, we show that structural information can be obtained from the chemical shift tensor components readily available from the analysis of the spinning sideband manifold.  相似文献   

4.
《Polyhedron》1999,18(20):2605-2608
The interaction of iron carbonyls, Fe(CO)5, Fe2(CO)9 and Fe3(CO)12 with Me3NO occurs according to a one-electron redox-disproportionation scheme giving rise to iron carbonyl radical anions: Fe2(CO)8·− (1), Fe3(CO)12·− (2), Fe3(CO)11·− (3) and Fe4(CO)13·− (4). The role of Me3NO, inducing CO-substitution, consists of the generation of reactive 17-electron species with a labile coordination sphere in which the substitution for other ligands occurs, resulting from fast ligand and electron exchange in the confines of the ETC-reaction.  相似文献   

5.
Solid state carbon-13 NMR spectra of metal carbonyls are readily obtained using commercial instrumentation. The observed isotropic chemical shifts are in good agreement with solution values. Furthermore there is a one-to-one correspondence between crystallographically unique carbonyls and magnetically distinguishable carbonyls in the absence of accidental degeneracies. For cis-(η5-C5H5)2Fe2(CO)4 the site symmetry is C1 while the molecular symmetry is C. The lower solid state symmetry gives rise to more resonances in the solid spectrum than in solution. Magic angle tuning and chemical shifts were obtained using hexamethylbenzene as a standard.  相似文献   

6.
Reaction of WH(CO)3(η-C5Me5) with IrCl(CO)2(4-H2NC6H4Me) affords WIr3(μ-CO)3(CO)8(η-C5Me5) in low yield. A structural study reveals a WIr2-centred plane of bridging carbonyls, in contrast to the crystal structure of WIr3(CO)11(η-C5H5) (all-terminal carbonyl distribution). DFT calculations reveal an increasing proclivity to adopt an all-terminal CO disposition for clusters MIr3(CO)11(η-C5H5) in the gas phase on proceeding from M=Cr to Mo and then W, consistent with structural studies in the solid state for which the tungsten-containing cluster is the only all-terminal example. Increasing electron donation from the ligands in the tungsten system (either from phosphine substitution or cyclopentadienyl permethylation) suffices to impose a plane of bridging carbonyls in the ground state structure. 13C NMR fluxionality studies reveal that CO exchange mechanism(s) for WIr3(CO)11(η-C5H5) and the related tetrahedral cluster W2Ir2(CO)10(η-C5H5)2 are very fast and involve all carbonyls on the clusters. DFT calculations on MIr3(CO)11(η-C5H5) (M=Cr, Mo) substantiate a ‘merry-go-round’ mechanism for carbonyl scrambling in these systems, a result which is consistent with the scrambling behaviour seen in the NMR fluxionality studies on the W-containing congener.  相似文献   

7.
The crystal and molecular structure of (C9H10)Fe2(CO)66 has been determined from a three-dimensional, X-ray crystal-structure analysis. The structure was solved by Patterson and Fourier methods and refined by full-matrix least-squares. With all atoms located and refined the conventional R factor is 0.034, based on 2651 reflections measured with an automated General Electric XRD-6 diffractometer utilizing Mo-Kα radiation. Crystallographic data are: space group P1 with a = 7.229(4), b = 14.699(4) and c = 7.696(2) Å, α = 87.53(2)°, β = 113.48(3)° and γ = 102.08(2)°, Z = 2 and ?calcd = 1.80 g/cm3, ?obsd = 1.78 g/cm3. Contrary to previous claims the structure of the molecule is of the asymmetric type already established for (C8H10)Fe2(CO)6 and (C10H12)Fe2(CO)6. The almost identical bond parameters amongst the three structures are noted. The lengthening of the FeC(carbonyl) trans to FeC σ bond is attributed to the trans-influence of the σ-carbon atom. The fluxional nature of the molecule is also demonstrated by extending the variable temperature 1H NMR study down to ?127°.  相似文献   

8.
The title compound, (η5-C5H5)2Mo2(CO)4 (μ-EtCCEt) in its crystalline form, has a molecular structure that lacks symmetry. Two (ηs-C5H5)Mo groups are connected by an MoMo bond 2.977(1) Å in length with the usual sort of crosswise acetylene bridge. There are two terminal CO groups on Mo(1) and one on Mo(2). The fourth CO group is in a semi-bridging posture with Mo(2)—C = 1.936(6) and Mo(1)—C = 2.826(6). The 13CO NMR spectrum at ?126°C has six lines, indicative of the presence of two isomers, in each of which two CO's are either statically or dynamically equivalent. Complex changes occur in the spectrum as the temperature is increased so that at ?40°C there is only a single line. A detailed interpretation of these spectra is not yet available.  相似文献   

9.
The reaction of Fe3(CO)12 and N-(4-thiolphenyl)-1,8-naphthalimide afforded a new diironhexacarbonyl complex (3). The integrity and electronic structure of 3 has been determined by elemental analysis and spectroscopy (NMR and infrared). Infrared spectrum of 3 shows peaks at 2000, 2040, and 2075?cm?1 ascribed to stretching frequencies of the terminal metal carbonyls. Compound 4 was obtained from the reaction of Fe3(CO)12 and 4-aminothiolphenol. A comparison of the electronic, electrochemical, and electrocatalytic properties of 3 and 4 are discussed. Cyclic voltammetric studies show that 3 and 4 catalyze the reduction of acetic acid to produce hydrogen at ?2.19?V and ?1.88?V versus Fc/Fc+, respectively.  相似文献   

10.
Reaction of Fe3(CO)12 and Ph2PH in the presence of Et3N in THF at 0?°C immediately forms Fe2(CO)6(μ-PPh2)(μ-OH) (1), Fe2(CO)6(μ-PPh2)(μ-k2O,P-OPPh2) (2), and Fe2(CO)6(μ-PPh2)2 (3) in yields of 25, 14, and 19%, respectively. Experiments confirm that Et3N shortens the reaction time. The absence of O2 hinders the formation of 2. The presence of H2O can increase the yield of 1. Their structures have been determined by X-ray crystallography and the complexes have been completely characterized by EA, IR, and 1H, 13C, 31P NMR. Electrochemical studies reveal that they exhibit catalytic H2-producing activities.  相似文献   

11.
[Fe2sb‐CO)(CO)3(NO)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)]: Synthesis, X‐ray Crystal Structure and Isomerization Na[Fe2(μ‐CO)(CO)6(μ‐PtBu2)] ( 1 ) reacts with [NO][BF4] at —60 °C in THF to the nitrosyl complex [Fe2(CO)6(NO)(μ‐PtBu2)] ( 2 ). The subsequent reaction of 2 with phosphanes (L) under mild conditions affords the complexes [Fe2(CO)5(NO)L(μ‐PtBu2)], L = PPh3, ( 3a ); η‐dppm (dppm = Ph2PCH2PPh2), ( 3b ). In this case the phosphane substitutes one carbonyl ligand at the iron tetracarbonyl fragment in 2 , which was confirmed by the X‐ray crystal structure analysis of 3a . In solution 3b loses one CO ligand very easily to give dppm as bridging ligand on the Fe‐Fe bond. The thus formed compound [Fe2(CO)4(NO)(μ‐PtBu2)(μ‐dppm)] ( 4 ) occurs in solution in different solvents and over a wide temperature range as a mixture of the two isomers [Fe2sb‐CO)(CO)3(NO)(μ‐PtBu2)(μ‐dppm)] ( 4a ) and [Fe2(CO)4(μ‐NO)(μ‐PtBu2)(μ‐dppm)] ( 4b ). 4a was unambiguously characterized by single‐crystal X‐ray structure analysis while 4b was confirmed both by NMR investigations in solution as well as by means of DFT calculations. Furthermore, the spontaneous reaction of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ) with NO at —60 °C in toluene yields a complicated mixture of products containing [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 6 ) as main product beside the isomers 4a and 4b occuring in very low yields.  相似文献   

12.
Stoichiometric reduction of Os3CO)12 and Ru3(CO)12 with K and Ca, respectively; yields the two new cluster dianions [Os3(CO)11]2? and [Ru3(CO)11]2? which have been isolated and characterized. Temperature-dependent 13C NMR spectra for [Os3(CO)11]2? and infrared spectra of [Os3(CO)11]2? and [Ru3(CO)11]2? suggest a similar structure for these dianions in which there is a single edge-bridging carbonyl.  相似文献   

13.
The 13C NMR spectra of MM′(CO)6(DAB) complexes (M = M′ = Fe, Ru; M = Mn, Re and M′ = Co; DAB = 1,4-diazabutadiene) show very characteristic features which are directly related with the bonding mode of the DAB ligand to the binuclear metal carbonyl fragment. In these complexes the DAB ligand is σ2-N, μ2-N′, η2-C=N or σ2-N, σ2-N′, η2-C=N coordinated. Chemical shifts of about 175 ppm are observed for the σ-coordinated imine fragments and about 60 or 80 ppm for the η2-C=N coordinated imine fragments.In MnCo(CO)6[diacetylbis(cyclopropylimine)] the DAB ligand is fluxional, and the changes in the spectra when recorded at various temperatures can be interpreted in terms of an exchange between the σ- and π-coordinated part of the DAB ligand.The homodinuclear M2(CO)6(DAB) complexes (M = Fe or Ru) contain M(CO)3 fragments on which the carbonyl groups are involved in a local scrambling process with very different activation parameters (Tc = ?50°C and +85°C).MCo(CO)6(DAB) complexes (M = Mn, Re), which contain a semi-bridging carbonyl group according to the crystal structure, show rapid interchange of this carbonyl group with the terminal carbonyl groups on cobalt. The electronic balance is kept in equilibrium by an internal compensation within the DAB ligand.  相似文献   

14.
A diiron hexacarbonyl complex containing bridging phenanthrene‐4,5‐dithiolate ligand is prepared by oxidative addition of Phenanthro[4,5‐cde][1,2]dithiin to Fe2(CO)9. The complex is investigated as a model for the active site of the [Fe–Fe] hydrogenase enzyme. The compound, [(μ‐PNT)Fe2(CO)6]; (PNT = phenanthrene‐4,5‐dithiolate), was characterized by spectroscopic methods (IR, UV/Vis and NMR) and X‐ray crystallography. The IR and proton NMR spectra of [(μ‐PNT)Fe2(CO)6] ( 4 ) are in agreement with a PNT ligand attached to a Fe2(CO)6 core. The infrared spectrum of 4 recorded in dichloromethane contains three peaks at 2001, 2040, and 2075 cm–1 corresponding to the stretching frequency of terminal metal carbonyls. X‐ray crystallographic study unequivocally confirms the structure of the complex having a butterfly shape with an Fe–Fe bond length of 2.5365 Å close to that of the enzyme (2.6 Å). Electrochemical properties of [(μ‐PNT)Fe2(CO)6] have been investigated by cyclic voltammetry. The cyclic voltammogram of [(μ‐PNT)Fe2(CO)6] recorded in acetonitrile contains one quasi‐irreversible reduction (E1/2 = –0.84 V vs. Ag/AgCl, Ipc/Ipa = 0.6, ΔEp = 131 V at 0.1 V · s–1) and one irreversible oxidation (Epa = 0.86 V vs. Ag/AgCl). The redox of [(μ‐PNT)Fe2(CO)6] at E1/2 = –0.84 V can be assigned to the one‐electron transfer processes; [FeI–FeI] → [FeI–Fe0] and [FeI–Fe0] → [FeI–FeI].  相似文献   

15.
13C NMR spectra obtained for the norbornadiene complex Os3(CO)10(C7H8)indicate restricted equilibration of in-plane carbonyls via a triply bridged intermediate. Spectral assignments are facilitated by observation of significant 13C-13C coupling between nonequivalent trans carbonyls.  相似文献   

16.
《Polyhedron》2001,20(22-23):2765-2769
An ESR spectroscopy investigation of the kinetics of accumulation and consumption of iron carbonyl radical anions, Fe3(CO)12 and Fe3(CO)11, arising in the reaction of Fe3(CO)12 with (Et4N)SEt in THF at 19.5°C, was carried out using the stopped-flow technique. The solution of the inverse kinetic problem showed a satisfactory agreement between calculated and experimental data. This supports the principal idea that chain radical processes including preliminary complex formation followed by one-electron redox-initiation lie at the heart of the interaction of iron carbonyls with Lewis bases, and that the following transformations are due to electron and ligand changes in the coordination sphere of seventeen-electron coordinatively unsaturated species.  相似文献   

17.
Abstract

The kinetics of the transformation of [Ru6(CO)18]2? into [Ru6C(CO)16]2? in diglyme over the temperature range 130–160°C have been determined. The results are consistent with reversible loss of a carbonyl ligand from [Ru6(CO)18]2?, followed by formation of carbon dioxide and reassociation of carbon monoxide to give the observed product. Mass spectral analysis of the evolved carbon dioxide trapped as barium carbonate supports an intramolecular pathway for the disproportionation of carbon monoxide.  相似文献   

18.
Adduct formation on the oxygen of a bridging carbonyl causes a very small perturbation of metal—metal stretching frequencies of polynuclear carbonyls. This small shift contrasts with the large change in v(MM) when carbonyl groups are redistributed between terminal and bridging positions; therefore, using low frequency Raman spectroscopy, it is possible to infer the structural relation of C- and O-bonded adduct to the parent carbonyl. Structural inferences for Fe3(CO)12 · AlBr3, Ru3(CO)12 · AlBr3 and Fe2(CO)9 · AlBr3 are given.  相似文献   

19.
Tetranuclear Cluster Complexes of the Type [MM′(AuR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (M,M′ = Mn, Re; R = Ph, Cy, Et): Synthesis, Structure, and Topomerisation The dirhenium complex [Re2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 1 ) reacts at room temperature in thf solution with each two equivalents of the base DBU and of ClAuPR3 (R = Ph, Cy, Et) in a photochemical reaction process to afford the tetranuclear clusters [Re2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 2 ), Cy ( 3 ), Et ( 4 )) in yields of 35–48%. The homologue [Mn2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 5 ) leads under the same reaction conditions to the corresponding products [Mn2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 6 ), Et ( 8 )). Also [MnRe(μ‐H)(μ‐PCy2)(CO)7(ax/eq‐H2PCy)] ( 9 ) reacts under formation of [MnRe(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 10 ), Et ( 11 )). All new cluster complexes were identified by means of 1H‐NMR, 31P‐NMR and ν(CO)‐IR spectroscopic measurements. 2 , 4 and 10 have also been characterized by single crystal X‐ray structure analyses with crystal parameters: 2 triclinic, space group P 1, a = 12.256(4) Å, b = 12.326(4) Å, c = 24.200(6) Å, α = 83.77(2)°, β = 78.43(2)°, γ = 68.76(2)°, Z = 2; 4 monoclinic, space group C2/c, a = 12.851(3) Å, b = 18.369(3) Å, c = 40.966(8) Å, β = 94.22(1)°, Z = 8; 10 triclinic, space group P 1, a = 12.083(1) Å, b = 12.185(2) Å, c = 24.017(6) Å, α = 83.49(29)°, β = 78.54(2)°, γ = 69.15(2)°, Z = 2. The trapezoid arrangement of the metal atoms in 2 and 4 show in the solid structure trans‐positioned an open and a closed Re…Au edge. In solution these edges are equivalent and, on the 31P NMR time scale, represent two fluxional Re–Au bonds in the course of a topomerization process. Corresponding dynamic properties were observed for the dimanganese compounds 6 and 8 but not for the related MnRe clusters 10 and 11 . 2 and 4 are the first examples of cluster compounds with a permanent Re–Au bond valence isomerization.  相似文献   

20.
Ruthenium carbonyl triphenylphosphine complexes Ru2(CO)6−n (PPh3) n {μ-C(CH=CHPh)C(Ph)C(CH=CHPh)C(Ph)} (n=1, 2) were obtained by the reaction of complex Ru2(CO)6{μ-C(CH=CHPh)C(Ph)C(CH=CHPh)C(Ph)} containing the ruthenacyclopentadiene moiety with PPh3 in refluxing toluene. The complexes were characterized by IR and by1H,13C, and31P NMR spectroscopy, and by X-ray analysis. The monophosphine derivative is identical to the complex formed by fragmentation of the Ru3(CO)8(PPh3){μ-C(CH=CHPh)C(Ph)C(CH=CHPh)C(Ph)} cluster and contains the PPh3 ligand at the ruthenium atom of the ruthenacyclopentadiene moiety. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1836–1843, September, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号