首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 294 毫秒
1.
Organic semiconductors have attracted increasing interest owing to their potential application in various electronic and opto-electronic devices. Here, interfaces play an important role since they are responsible for the accumulation of charge carriers at and the efficiency of charge injection across interfaces. Both mechanisms are determined by the alignment of energy levels at the interface. This report is divided into two parts and presents some of the major physical mechanisms which determine the energy level alignment at interface of thin films of low molecular weight organic semiconductors. In the first part, the origin of interface dipoles, interface states, and surface band bending is discussed. In the second part, investigations on the properties of metal/perylene derivatives/inorganic semiconductor structures give further insight into the mechanisms at work, especially under non-thermal equilibrium conditions. PACS 73.20.-r; 73.40.-c; 79.60.Jv; 79.60.Fr  相似文献   

2.
有机半导体多层薄膜器件的性质很大程度上由有机-有机界面的传输性质所决定,但是现有的关于有机-有机界面的分析模型很难适用于实际器件的模拟.以Miller-Abrahams跳跃传导理论为基础,充分考虑有机-有机界面和金属-有机界面性质的不同,建立了一个新的描述有机-有机异质界面电荷传输的解析模型.结果表明有机异质界面的载流子传输不仅取决于界面的肖特基势垒,而且还取决于界面附近两边的电场强度和载流子浓度.此模型可用于有机半导体多层薄膜器件的电流密度、电场分布和载流子浓度分布的自洽计算. 关键词: 有机半导体 界面 载流子传输  相似文献   

3.
Core–shell structured nanocomposites, a type of talented functional materials with unique microstructure and properties, have shown great promise as photocatalysts for various applications, including photocatalytic degradation of pollutants, water splitting for hydrogen production, and selective organic transformations. The synthesis and utilization of efficient core–shell nanoarchitectured photocatalysts for selective organic synthesis are at the center of our research efforts and the focus of this minireview. Specifically, semiconductor‐based core–shell nanocomposites, including metal–semiconductor, semiconductor–semiconductor, semiconductor–shell (graphene and SiO2) as photocatalysts/cocatalysts for selective oxidation of alcohols, reduction of nitro organics and carbon dioxide for synthesis of fine chemicals, and redox‐combined selective synthesis of pipecolinic acid are summarized. It is hoped that this minireview can make a contribution to catalyzing the development of smart core–shell nanostructures in the field of photocatalytic selective organic transformations for solar energy conversion.  相似文献   

4.
采用多源有机分子气相沉积系统(OMBD)制备了CBP/Alq3有机多量子阱结构,利用电化学循环伏安特性和吸收光谱、小角X射线衍射、荧光光谱研究了量子阱的能带、结构和光致发光的特性。电化学循环伏安特性和吸收光谱的测量结果表明,CBP的最低占据分子轨道(LUMO)与最高占据分子轨道(HOMO)的位置分别为-2.74,-6.00eV,Alq3的LUMO与HOMO的位置分别为-3.10,-5.80eV,所以CBP/Alq3有机量子阱为Ⅰ型量子阱结构。小角X衍射测量显示,在小角的位置(2θ的范围在0°~3°)观察到了对应于量子阱结构的多级布拉格衍射峰,表明多层量子阱结构是有序的层状结构,界面比较完整,界面质量比较好。荧光光谱的研究结果表明,Ⅰ型量子阱结构可以有效地把能量从垒层传递给阱层,从而增强了阱层材料的发光。阱层的厚度对发光峰的位置影响很大,随阱层厚度减小,阱层材料的发光峰出现蓝移现象。并对引起发光峰蓝移的原因进行了讨论。  相似文献   

5.
A series of heteroleptic cyclometalated Ir(III) complexes for organic light‐emitting diodes (OLEDs) application have been investigated theoretically to explore their electronic structures and spectroscopic properties. The geometries, the electronic structures, the lowest‐lying singlet absorptions and triplet emissions of Ir(dfppy)2(tpip), Ir(tfmppy)2(tpip), and theoretically designed models of Ir(ppy)2(tpip) were investigated with the density functional theory (DFT)‐based approaches, where ppy = 2‐phenylpyridine, dfppy = 4,6‐difluorophenylpyridine, tfmppy = 4‐trifluoromethylphenylpyridine, and tpip = tetraphenylimidodiphosphinate. Their structures in the ground and their excited states have been optimized at the DFT/Becke 3‐parameter Lee Yang Parr (B3LYP)/Los Alamos National Laboratory 2‐double‐z (LANL2DZ) and time‐dependent DFT/B3LYP/LANL2DZ levels, and the lowest absorptions and emissions were evaluated at B3LYP and M062X level of theory, respectively. Furthermore, the energy transfer mechanism together with the advantage of low efficiency roll‐off for these complexes also can be analyzed here. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
曹宁通  张雷  吕路  谢海鹏  黄寒  牛冬梅  高永立 《物理学报》2014,63(16):167903-167903
利用光电子能谱、原子力显微镜以及低能电子衍射等表面研究手段系统研究了真空沉积生长的酞菁铜薄膜与衬底MoS2(0001)之间的范德瓦耳斯异质结界面电子结构和几何结构.角分辨光电子能谱清楚地再现了MoS2(0001)衬底在Γ点附近的能带结构.低能电子衍射结果表明,CuPc薄膜在MoS2(0001)表面沿着衬底表面[11ˉ20],[1ˉ210]和[ˉ2110]三个晶向有序生长,反映了衬底对CuPc的影响.原子力显微镜结果表明,CuPc在MoS2衬底上遵循层状-岛状生长模式:在低生长厚度下(单层薄膜厚度约为0.3 nm),CuPc分子平面平行于MoS2表面上形成均匀连续的薄膜;在较高的沉积厚度下,CuPc沿衬底晶向形成棒状晶粒,表现出明显的各向异性.光电子能谱显示界面偶极层为0.07 eV,而且能谱在膜厚1.2 nm饱和,揭示了酞菁铜与MoS2(0001)范德瓦耳斯异质结的能级结构.  相似文献   

7.
We review current research on the electronic properties of nanoscale metallic islands and clusters deposited on semiconductor substrates. Reported results for a number of nanoscale metal-semiconductor systems are summarized in terms of their fabrication and characterization. In addition to the issues faced in large-area metal-semiconductor systems, nano-systems present unique challenges in both the realization of well-controlled interfaces at the nanoscale and the ability to adequately characterize their electrical properties. Imaging by scanning tunneling microscopy as well as electrical characterization by current-voltage spectroscopy enable the study of the electrical properties of nanoclusters/semiconductor systems at the nanoscale. As an example of the low-resistance interfaces that can be realized, low-resistance nanocontacts consisting of metal nanoclusters deposited on specially designed ohmic contact structures are described. To illustrate a possible path to employing metal/semiconductor nanostructures in nanoelectronic applications, we also describe the fabrication and performance of uniform 2-D arrays of such metallic clusters on semiconductor substrates. Using self-assembly techniques involving conjugated organic tether molecules, arrays of nanoclusters have been formed in both unpatterned and patterned regions on semiconductor surfaces. Imaging and electrical characterization via scanning tunneling microscopy/spectroscopy indicate that high quality local ordering has been achieved within the arrays and that the clusters are electronically coupled to the semiconductor substrate via the low-resistance metal/semiconductor interface.  相似文献   

8.
用光伏效应研究有机薄膜电致发光器件中的接触性质   总被引:1,自引:0,他引:1  
刘祖刚  张志林 《发光学报》1994,15(3):226-232
首次发现了有机薄膜电致发光器件的光生伏特效应,通过对器件的光电流响应谱的详细研究,分析了不同结构的有机发光器件中的有机半导体之间,以及有机半导体与电极材料之间的半导体接触性质,发现有机发光材料Alq3,有机空穴传输材料daimine与金属铝电极之间形成阻挡接触,是电致发光器件发光和产生光电效应的根本原因,而双层器件中有机层Alq3与diamine之间的结是双层器件产生高发光效率的原因,正是这种结在双层器件中起了局限载流子和激子的作用,使发光亮度大为提高,结合分区掺杂实验结果,给出了较完善的能带模型。  相似文献   

9.
These studies are focused on understanding the role played by a solvent in chemical and electronic processes occurred in the course of semiconductor surface passivation at semiconductor/electrolyte interface. It is shown that the chemical reactivity of the ionic adsorbate at a semiconductor/electrolyte interface can be changed considerably through interaction with solvent molecules. The reactivity of anions depends essentially on the solvating solvent: hydrated ions could be either slightly electrophilic or slightly nucleophilic, whereas the ions solvated by alcohol molecules are always strongly nucleophilic. Mechanism of interaction of such solvated ions with the semiconductor surface atoms depends on the solvent, as is demonstrated by the example of processes occurred at GaAs(1 0 0)/sulfide solution interfaces. It is found that on adsorption of HS ions from different solvents the AsS bonds with solvent-dependent ionic character are formed on a GaAs(1 0 0) surface. The surface obtained in such a way possesses different ionization energy and exhibit different electronic properties dependent on the solvent.  相似文献   

10.
A quantum mechanical approach has been used to investigate on the potential for using two naturally occurring flavonoids: quercetin and luteolin as candidates for organic semiconductor. Selection of flavonoids enables to evaluate the effects of hydroxyl group structural features. The relationship between molecular packing and charge transport in flavonoids is presented. The calculated results indicate that quercetin should be an ideal candidate as high-performance p-type organic semiconductor material, while luteolin is predicted as n-type organic semiconductor material. The predicted maximum electron mobility value of quercetin is 0.075 cm2 V?1 s?1, which appears at the orientation angle near 91°/271° of conducting channel on the reference planes b–c. Theoretical investigation of natural semiconductors is helpful for designing higher performance electronic materials used in biochemical and industrial field to replace expensive and rare organic materials.  相似文献   

11.
Electronic coupling between Wannier and Frenkel excitons in an inorganic/organic semiconductor hybrid structure is experimentally observed. Time-resolved photoluminescence and excitation spectroscopy directly demonstrate that electronic excitation energy can be transferred with an efficiency of up to 50% from an inorganic ZnO quantum well to an organic [2,2-p-phenylenebis-(5-phenyloxazol), alpha-sexithiophene] overlayer. The coupling is mediated via dipole-dipole-interaction analog to the F?rster transfer in donor-acceptor systems.  相似文献   

12.
We investigate the electronic transport properties across the pentacene/graphene interface. Current transport across the pentacene/graphene interface is found to be strikingly different from transport across pentacene/HOPG and pentacene/Cu interfaces. At low voltages, diodes using graphene as a bottom electrode display Poole–Frenkel emission, while diodes with HOPG and Cu electrodes are dominated by thermionic emission. At high voltages conduction is dominated by Poole–Frenkel emission for all three junctions. We propose that current across these interfaces can be accurately modeled by a combination of thermionic and Poole–Frenkel emission. Results presented not only suggest that graphene provides low resistive contacts to pentacene where a flat-laying orientation of pentacene and transparent metal electrodes are desired but also provides further understanding of the physics at the organic semiconductor/graphene interface.  相似文献   

13.
This paper is a review of the known effects of hydrogen in crystalline semiconductor grain-boundaries and interfaces and of the recent progress in the fundamental study of the mechanisms of hydrogen-interfaces interactions. The interfaces considered are: grain boundaries of polycrystalline semiconductors, semiconductor/semiconductor or semiconductor/metal interfaces, silicon/silicon oxide interfaces (including precipitated silicon oxide interfaces), and semiconductor/electrolyte interfaces. The influence of structural and electronic defects on the hydrogen passivation processes is discussed. Emphasis is laid upon the role of segregated impurities on the electrical activity of interfaces and its subsequent passivation by hydrogen. Some ideas are given for development of experimental and theoretical research to improve the understanding of the mechanisms of hydrogen action.  相似文献   

14.
蹇磊  谭英雄  李权  赵可清 《物理学报》2013,62(18):183101-183101
根据爱因斯坦方程和Marcus电荷传输模型, 使用密度泛函理论B3lyp/6-31g**理论水平计算6 个吐昔烯衍生物分子的结构和电荷传输性质. 结果显示: 6个吐昔烯的衍生物分子的空穴迁移速率为0.018–0.062 cm2·V-1·s-1, 电子迁移率为0.055–0.070 cm2·V-1·s-1, 其中3, 8, 13-辛烷氧基吐昔烯衍生物分子适合作为双极性传输材料. 三条烷氧基链的吐昔烯衍生物分子上引入三个甲氧基或羟基, 均使空穴和电子传输率降低. 引入给电子基团或共轭性基团可减小吐昔烯衍生物分子的能隙, 达到有机半导体的能隙要求. 关键词: 吐昔烯衍生物 空穴传输 电子传输 有机半导体  相似文献   

15.
用光伏效应研究有机薄膜电致发光器件中的接触性质   总被引:2,自引:0,他引:2  
首次发现了有机薄膜电致发光器件的光生伏特效应,通过对器件的光电流响应谱的详细研究,分析了不同结构的有机发光器件中的有机半导体之间,以及有机半导体与电极材料之间的半导体接触性质,发现有机发光材料Alq3,有机空穴传输材料daimine与金属铝电极之间形成阻挡接触,是电致发光器件发光和产生光电效应的根本原因;而双层器件中有机层Alq3与diamine之间的结是双层器件产生高发光效率的原因,正是这种结在双层器件中起了局限载流子和激子的作用,使发光亮度大为提高,结合分区掺杂实验结果,给出了较完善的能带模型.  相似文献   

16.
Π-electrons in chemical structure are the unique part of the fundamental particles that modify many interesting properties among the organic semiconductor molecules. By comparing the ground state energy, electronic properties and chemical indices within RHF/6-311G, B3LYP/6-311(G), B3LYP/6-311G(d,p), MP2/6-311G* and Cam-B3LYP/aug-cc-pvdz basis set at level of the theory, we identify that the resonance and the inductive effect of the delocalisation of electrons around the acene molecules could be responsible for acenes electronic and chemical properties. The total energies, energy gaps, HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energy gaps, electron affinity and ionisation potential are close to the experimental and theoretical results. Among the chemical indices, electrophilicity (ω), electronegativity (χ) and chemical hardness (η) observed to decrease as the acenes ring increasing, whereas the softness (S) and chemical potential (μ) increase with increasing the number of carbons around the acene molecules. The study is extended to electronics and chemical properties of the acene.  相似文献   

17.
The traditional theory of thermionic emission at metal/inorganic crystalline semiconductor interfaces is no longer applicable for the interface between a metal and an organic semiconductor. Under the assumption of thermalization of hot carriers in the organic semiconductor near the interface, a theory for thermionic emission of charge carriers at metal/organic semiconductor interfaces is developed. This theory is used to explain the experimental result from Samuel group [J.P.J. Markham, D.W. Samuel, S.-C. Lo, P.L. Burn, M. Weiter, H. Baessler, J. Appl. Phys. 95 (2004) 438] for the injection of holes from indium tin oxide into the dendrimer based on fac-tris(2-phenylpyridyl) iridium(III).  相似文献   

18.
A detailed investigation of the chemistry and electronic structure during the formation of the interfaces between thin films of the archetypal organic molecular semiconductor copper phthalocyanine (CuPc) and Ag or Sn deposited on it was performed using photoemission and near-edge X-ray absorption spectroscopies with synchrotron light. Our study demonstrates the formation of sharp, abrupt interfaces, a behavior which is of particular importance for applications in organic devices. Moreover, for Ag on CuPc we demonstrate that this interface is free from any reaction, whereas there is slight interface reaction for Sn/CuPc.  相似文献   

19.
In this work, a comparison of the interfacial electronic properties between a semiconducting oligomer and a variety of substrates with different properties—metal, semiconductor and oxide layers—is reported. The interface formation was studied by X-ray and Ultraviolet photoelectron spectroscopies (XPS, UPS). High purity oligomer films with thickness up to 10 nm were prepared by stepwise evaporation on the clean substrates under ultrahigh vacuum (UHV) conditions. Analysis of the oligomer and substrate related XPS spectra clarified the interfacial chemistry and band bending in the semiconducting materials. The valence band structure and the interfacial dipoles were determined by UPS. The barriers for hole injection were measured at the interfaces of the organic film with all substrates. The interfacial energy band diagrams were deduced in all cases from the combination of XPS and UPS results. Emphasis was given on the influence of the substrate work function () on the electronic properties of these interfaces.  相似文献   

20.
For organic photovoltaics (OPV) the maximum in obtainable power conversion efficiency is limited by a low semiconductor permittivity and the resulting enhanced Coulomb interaction (CI). This, however, is an aspect rarely addressed in the OPV development. Here, a concept is introduced which allows a reduced CI in organic semiconductors. This is the result of a device structure, which upon exciton formation forces part of the electric field between complementary charges through a high‐k material, resulting in partial field screening and as such a reduced CI. The feasibility of this concept is substantiated by an investigation on the exciton separation efficiency in pentacene devices. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号