首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The new high‐pressure borate HP‐Cs1?x(H3O)xB3O5 (x=0.5–0.7) was synthesized under high‐pressure/high‐temperature conditions of 6 GPa/900 °C in a Walker‐type multianvil apparatus. The compound crystallizes in the monoclinic space group C2/c (Z=8) with the parameters a=1000.6(2), b=887.8(2), c=926.3(2) pm, β=103.1(1)°, V=0.8016(3) nm3, R1=0.0452, and wR2=0.0721 (all data). The boron–oxygen network is analogous to those of the compounds HP‐MB3O5, (M=K, Rb) and exhibits all three structural motifs of borates—BO3 groups, corner‐sharing BO4 tetrahedra, and edge‐sharing BO4 tetrahedra—at the same time. Channels inside the boron–oxygen framework contain the cesium and oxonium ions, which are disordered on a specific site. Estimating the amount of hydrogen by solid‐state NMR spectroscopy and X‐ray diffraction led to the composition HP‐Cs1?x(H3O)xB3O5 (x=0.5–0.7), which implies a nonzero phase width.  相似文献   

2.
La4B14O27: A Lanthanum ultra‐Oxoborate with a Framework Structure Single crystals of La4B14O27 could be synthesized by the reaction of La2O3, LaCl3 and B2O3 with an access of CsCl as fluxing agent in gastightly sealed platinum ampoules within twenty days at 710 °C and appear as colourless, transparent and waterresistant platelets. The new lanthanum oxoborate La4B14O27 (monoclinic, C2/c; a = 1120.84(9), b = 641.98(6), c = 2537.2(2) pm, β = 100.125(8)°; Z = 4) is built of a three‐dimensional boron‐oxygen framework containing seven crystallographically different boron atoms. Four of these B3+ cations are surrounded by four O2? anions tetrahedrally, whereas the other three have only three oxygen neighbours with nearly plane triangular coordination figures. Three of the [BO4]5? tetrahedra form [B3O9]9? rings by cyclic vertex‐condensation, which are further linked via [BO3]3? units to infinite layers. Two of these layers connect via one [B2O7]8? unit of two corner‐shared [BO4]5? tetrahedra to double layers, which themselves build up a three‐dimensional framework together with chains consisting of two [BO4]5? tetrahedra and one [BO3]3? triangle. One of the two crystallographically independent La3+ cations (La1) is surrounded by ten O2? anions and resides within the oxoborate double layers. (La2)3+ shows a (8+2)‐fold coordination of O2? anions and occupies channels along the [110] direction.  相似文献   

3.
The new cesium pentaborate HP‐CsB5O8 is synthesized under high‐pressure/high‐temperature conditions of 6 GPa and 900 °C in a Walker‐type multianvil apparatus. The compound crystallizes in the orthorhombic space group Pnma (Z=4) with the parameters a=789.7(1), b=961.2(1), c=836.3(1) pm, V=0.6348(1) nm3, R1=0.0359 and wR2=0.0440 (all data). The new structure type of HP‐CsB5O8 exhibits the simultaneous linkage of trigonal BO3 groups, corner‐sharing BO4 tetrahedra, and edge‐sharing BO4 tetrahedra including the presence of threefold‐coordinated oxygen atoms. With respect to the rich structural chemistry of borates, HP‐CsB5O8 is the second structure type possessing this outstanding combination of the main structural units of borates in one compound. The structure consists of corrugated chains of corner‐ and edge‐sharing BO4 tetrahedra interconnected through BO3 groups forming octagonal channels. Inside these channels, cesium is 13+3‐fold coordinated by oxygen atoms. 11B MQMAS NMR spectra are analyzed to estimate the isotropic chemical shift values and quadrupolar parameters. IR and Raman spectra are obtained and compared to the calculated vibrational frequencies at the Γ‐point. The high‐temperature behavior is examined by means of temperature‐programmed powder diffraction.  相似文献   

4.
Synthesis and Crystal Structure of Terbium(III) meta‐Oxoborate Tb(BO2)3 (≡ TbB3O6) The terbium meta‐oxoborate Tb(BO2)3 (≡ TbB3O6) is obtained as single crystals by the reaction of terbium, Tb4O7 and TbCl3 with an excess of B2O3 in gastight sealed platinum ampoules at 950 °C after three weeks. The compound appears to be air‐ and water‐resistant and crystallizes as long, thin, colourless needles which tend to growth‐twinning due to their marked fibrous habit. The crystal structure of Tb(BO2)3 (orthorhombic, Pnma; a = 1598.97(9), b = 741.39(4), c = 1229.58(7) pm; Z = 16) contains strongly corrugated oxoborate layers {(BO2)} built of vertex‐linked [BO4]5‐ tetrahedra (d(B‐O) = 143 ‐ 154 pm, ?(O‐B‐O) = 102‐115°) which spread out parallel (100). The four crystallographically different Tb3+ cations all exhibit coordination numbers of eight towards the oxygen atoms (d(Tb‐O) = 228‐287 pm). The corresponding metal cation polyhedra [TbO8]13+ too convene to layers (composition: {(Tb2O11)16‐}) which are likewise oriented parallel to the (100) plane.  相似文献   

5.
Pr(BO2)3 and PrCl(BO2)2: Two Praseodymium meta‐Borates in Comparison Single‐crystalline PrCl(BO2)2 can be obtained by the reaction of praseodymium, Pr6O11 and PrCl3 with a small excess of B2O3 in evacuated silica tubes after seven days at 850 °C. If NaCl is additionally used as flux, single crystals of Pr(BO2)3 dominate the main product. Both praseodymium(III) meta‐borates are air and water stable. The crystals of PrCl(BO2)2 emerge as long, thin, pale green needles which tend to severe twinning due to their fibrous habit. The crystal structure (triclinic, P1¯; a = 420.56(4), b = 655.42(7), c = 808.34(8) pm, α = 82.361(8), β = 89.173(9), γ = 71.980(7)°, Z = 2) exhibits zigzag chains {[(B1)ot1/1Oe2/2(B2)Ot1/1Oe2/2]2−} (≡ {[BO2]}) of corner‐linked [BO3]3− triangles with syndiotactic orientation of the terminal oxygen atoms which are running parallel to the [100] direction. The Pr3+ cations are surrounded by three Cl and seven O2− anions with the shape of a tetracapped trigonal prism. The green, transparent crystals of Pr(BO2)3 (monoclinic, C2/c; a= 984.98(9), b = 809.57(8), c = 641.02(6) pm, β = 126.783(9)°, Z = 4) appear either lath‐shaped or rather spherical. In the crystal structure the B3+ cations reside both in trigonal planar as well as in tetrahedral coordination of oxygen atoms. Both types of borate polyhedra ([BO3]3− and [BO4]5−) are linked via corners to form chains of the composition {[(B2)‐Ot1/1Oe2/2(B1)Oe4/2(B2)Ot1/1Oe2/2]3−} (≡ {[BO2]}) which run parallel [101]. The coordination sphere of the Pr3+ cations consists of ten oxide anions which build up a bicapped square antiprism.  相似文献   

6.
The indium oxide‐borate In4O2B2O7 was synthesized under high‐pressure/high‐temperature conditions at 12.5 GPa/1420 K using a Walker‐type multianvil apparatus. Single‐crystal X‐ray structure elucidation showed edge‐sharing OIn4 tetrahedra and B2O7 units building up the oxide‐borate. It crystallizes with Z = 8 in the monoclinic space group P21/n (no. 14) with a = 1016.54(3), b = 964.55(3), c = 1382.66(4) pm, and β = 109.7(1)°. The compound was also characterized by powder X‐ray diffraction and vibrational spectroscopy.  相似文献   

7.
Single crystals of synthetic Na3VB6O13 were obtained by heating a mixture of Na2CO3.H2O, V2O5, and H3BO3; its formula has been determined by the resolution of the structure from X-ray diffraction data. The compound is orthorhombic, space group P212121; the unit cell parameters are a=7.723(7), b=10.155(4), c=12.505(4) Å, Z=4. The crystal structure was solved from 1535 reflections until R=0.029; it contains hexaborate units formed by three triangular BO3 (3Δ) and three tetrahedral BO4 (3T). These hexaborate groups are joined together to form sheets which are linked by VO4 tetrahedra leading to a three-dimensional network. The shorthand notation of the vanadoborate ion is 6: ∞3 (3Δ+3T)+VO4. The sodium atoms are inside the channels that exist in the compound, whose structural formula may be written Na3[B6O9(VO4)]. This compound melts incongruently; powder may be obtained by annealing a mixture of Na2B4O7 and V2O5 at 630°C. It is the first vanadoborate for which the formula and the structure have been unambiguously established.  相似文献   

8.
LaCl(BO2)2 and Er2Cl2[B2O5]: Two Chloride Oxoborates of Trivalent Lanthanides Er2Cl2[B2O5] is obtained as single crystals by the reaction of ErCl3, Er2O3 and B2O3 with an excess of ErCl3 as flux in evacuated silica tubes after two weeks at 850 °C. The compound crystallizes as long, pale pink needles and appears to be air‐ and water‐resistant. Single‐crystalline LaCl(BO2)2 emerges from the reaction of La2O3, LaCl3, and B2O3 with an excess of B2O3 as flux in evacuated silica tubes after four weeks at 900 °C. LaCl(BO2)2 crystallizes as thin, colourless, air‐ and water‐resistant needles which tend to severe twinning due to their fibrous habit. The crystal structure of Er2Cl2[B2O5] (orthorhombic, Pbam; a = 1489.65(9), b = 1004.80(6), c = 524.86(3) pm; Z = 4) contains two crystallographically different erbium cations. (Er1)3+ resides in pentagonal‐bipyramidal coordination of seven anions while (Er2)3+ is surrounded by only six anions with the shape of an octahedron. The planar oxodiborate units [B2O5]4— consisting of two vertex‐shared [BO3]3— triangles are isolated according to {([BOO]2)4—}. LaCl(BO2)2 crystallizes isostructurally with PrCl(BO2)2 in the triclinic space group P1¯ (a = 423.52(4), b = 662.16(7), c = 819.33(8) pm; α = 82.081(8), β = 89.238(9), γ = 72.109(7)°; Z = 2). The characteristic unit consists of endless chains built up by corner‐linked [BO3]3— triangles. These quasi‐planar zigzag chains of the composition {[(B1)OO(B2)OO]2—} (≡ {[BO2]} run parallel [100]. The La3+ cations exhibit coordination numbers of ten and are coordinated by three Cl and seven O2— anions.  相似文献   

9.
The solid‐liquid equilibria in the quinary system Na+, K+//Cl?, SO2?4, B4O2?7‐H2O at 298 K had been studied experimentally using the method of isothermal solution saturation. Solubilities and densities of the solution of the quinary system were measured experimentally. Based on the experimental data, the dry‐salt phase diagram and water content diagram of the quinary system were constructed, respectively. In the equilibrium diagram of the quinary system Na+, K+//Cl?, SO2?4, B4O2?7‐H2O at 298 K, there are five invariant points F1, F2, F3, F4 and F5; eleven univariant curves E1F1, E2F2, E3F3, E4F5, E5F2, E6F4, E7F5, F1F4, F2F4 F1F3 and F3F5, and seven fields of crystallization saturated with Na2B4O7 corresponding to Na2SO4, Na2SO4·10H2O, Na2SO4·3K2SO4 (Gla), K2SO4, K2B4O7·4H2O, NaCl and KCl. The experimental results show that Na2SO4·3K2SO4 (Gla), K2SO4 and K2B4O7·4H2O have bigger crystallization fields than other salts in the quinary system Na+, K+//Cl?, SO2?4, B4O2?7‐H2O at 298 K.  相似文献   

10.
Rational self‐assembly of Sb2O3 and Na2WO4, or (NH4)18[NaSb9W21O86] with transition‐metal ions (Mn2+, Cu2+, Co2+), in aqueous solution under controlled conditions yield a series of sandwich type complexes, namely, Na2H2[Mn2.5W1.5(H2O)8(B‐β‐SbW9O33)2]?32 H2O (1) , Na4H7[Na3(H2O)6Mn3(μ‐OAc)2(B‐α‐SbW9O33)2]?20 H2O (OAc=acetate anion) (2) , NaH8[Na2Cu4Cl(B‐α‐SbW9O33)2]?21 H2O (3) , Na8K[Na2K(H2O)2{Co(H2O)}3(B‐α‐SbW9O33)2]? 10 H2O (4) , and Na5H[{Co(H2O)2}3W(H2O)2(B‐β‐SbW9O33)2]?11.5 H2O (5) . These structures are determined by using the X‐ray diffraction technique and further characterized by obtaining IR spectra and performing elemental analysis. Structure analysis reveals that polyoxoanions in 1 and 5 comprise of two [B‐β‐SbW9O33]9? building units, whereas 2 , 3 , and 4 consist of two isomerous [B‐α‐SbW9O33]9? building blocks, which are all linked by different transition‐metal ions (Mn2+, Cu2+, or Co2+) with different quantitative nuclearity. It should be noted that compound 2 represents the first one‐dimensional sinusoidal chain based on sandwich like tungstoantimonate building blocks through the carboxylate‐bridging ligands. Additionally, 3 is constructed from sandwiched anions [Na2Cu4Cl(B‐α‐SbW9O33)2]9? linked to each other to form an infinitely extended 2D network, whereas 5 shows an interesting 3D framework built up from offset sandwich type polyoxoanion [{Co(H2O)2}3W(H2O)2(B‐β‐SbW9O33)2]6? linked by Co2+ and Na+ ions. EPR studies performed at 110 K and room temperature reveal that the metal cations (Mn2+, Cu2+, Co2+) reside in a square‐pyramidal geometry in 2 , 3 , and 4 . The magnetic behavior of 1 – 4 suggests the presence of weak antiferromagnetic coupling interactions between magnetic metal centers with the exchange integral J=?0.552 cm?1 in 2 .  相似文献   

11.
In the title compound, [Na4(C8H16BO4)4(C4H10O2)]n, there are two coordination types for the four independent Na+ cations: two Na+ cations bond to six diolate O atoms [Na—O = 2.305 (2)–2.609 (2) Å], while the other two are five‐coordinate via one 1,4‐butane­diol [2.289 (2) and 2.349 (3) Å] and four diolate O atoms [2.295 (2)–2.408 (2) Å]. Corresponding to this, there are three‐ and four‐coordinate diolate O atoms, the latter bridging Na atoms. The 1,4‐butane­diol mol­ecules lie on inversion centres. The boron stereochemistry shows minor local perturbations from its usual tetrahedral state [B—O = 1.457 (4)–1.503 (4) Å]. The resulting polymer packs as sheets parallel to the (10) plane crosslinked by the butane­diol mol­ecules. The structure was solved using data from a multiple crystal.  相似文献   

12.
Abstract. The cadmium borophosphate compound Cd3[B2P4O14(OH)4] was synthesized under mild hydrothermal conditions. The crystal structure was determined by single‐crystal X‐ray diffraction [triclinic, space group P$\bar{1}$ (no. 2), a = 5.4362(11) Å, b = 8.2190(16) Å, c = 8.3918(17) Å, and α = 111.87(3)°, β = 104.63(3)°, γ = 90.73(3)°, V = 334.29(12) Å3 and Z = 1]. The 3D open framework of the title compound is constructed from BO3(OH) tetrahedra and 2D layers along the [100] direction. The resulting framework contains twisted eight‐membered rings that form 1D channels.  相似文献   

13.
Potassium‐containing zirconium(IV)/titanium(IV) tantalum(V) oxides, K3TiTa7O21 ( 1 ) and K3ZrTa7O21 ( 2 ), of K3Nb8O21‐type of compounds are afforded from potassium‐molybdate flux. Both compounds crystallize in the hexagonal space group P63/mcm (no. 193) with a = 908.69(2), c = 1202.83(7) pm and c/a = 1.324 (Z = 2) for 1 and a = 913.30(3), c = 1219.21(6) pm and c/a = 1.335 (Z = 2) for 2 , respectively. The Structural motif of [MTa7O21]3– (M = Ti4+ or Zr4+) consists of edge‐shared (M,Ta)6O24‐units that are similar to corner‐sharing Ta6O27 units of synthetic soro‐silicate K3Ta3Si2O13 and double borate K3Ta3B2O12. The solid state bandgap measurements revealed that calculated values (3.26 eV for K3TiTa7O21 and 3.14 eV for K3ZrTa7O21) are dependent on aperture of Ta–O–Ta bond angle as it was previously shown for perovskite‐type tantalate photocatalysts.  相似文献   

14.
The compounds α‐RE2B4O9, with RE = Sm (disamarium tetraborate) and Ho (diholmium tetraborate), were synthesized under conditions of high pressure and high temperature in a Walker‐type multianvil apparatus, at 7.5 GPa and 1323 K for α‐Sm2B4O9 and at 10 GPa and 1323 K for α‐Ho2B4O9. The crystal structures were determined from single‐crystal X‐ray diffraction data collected at room temperature. The structures are isotypic with the already known α‐RE2B4O9 (RE = Eu–Dy) phases, displaying the new structural motif of edge‐sharing BO4 tetrahedra next to the known motif of corner‐sharing BO4 tetrahedra. As the end members of this isotypic series, the two title compounds mark the borders of the stability field of the appearance of edge‐sharing BO4 tetrahedra.  相似文献   

15.
The First Vanadium(III) Borophosphate: Synthesis and Crystal Structure of CsV3(H2O)2[B2P4O16(OH)4] CsV3(H2O)2[B2P4O16(OH)4] was prepared under mild hydrothermal conditions (T = 165 °C) from mixtures of CsOH(aq), VCl3, H3BO3, and H3PO4 (molar ratio 1 : 1 : 1 : 2). The crystal structure was determined by X‐ray single crystal methods (monoclinic; space group C2/m, No. 12): a = 958.82(15) pm, b = 1840.8(4) pm, c = 503.49(3) pm; β = 110.675(4)°; Z = 2. The anionic partial structure contains oligomeric units [BP2O8(OH)2]5–, which are built up by a central BO2(OH)2 tetrahedron and two PO4 tetrahedra sharing common corners. VIII is octahedrally coordinated by oxygen of adjacent phosphate tetrahedra and OH groups of borate tetrahedra as well as oxygen of phosphate tetrahedra and H2O molecules, respectively (coordination octahedra VO4(OH)2 and VO4(H2O)2). The oxidation state +3 for vanadium was confirmed by measurements of the magnetic susceptibility. The trimeric borophosphate groups are connected via vanadium centres to form layers with octahedra‐tetrahedra ring systems, which are likewise linked via VIII‐coordination octahedra. Overall, a three‐dimensional framework constructed from VO4(OH)2 and VO4(H2O)2 octahedra as well as BO2(OH)2 and PO4 tetrahedra results. The structure contains channels running along [001], which are occupied by Cs+ in a distorted octahedral coordination (CsO4(H2O)2).  相似文献   

16.
100 ng or less amount of boron in the form of Na2B4O7 was loaded on tantalum filament of thermal ionization mass spectrometer. A serial isotope ratios of metaborate, Me=88 (Na2 11BO2) and Me=89 (Na2 11BO2) prepared with spike (10B enriched) and nature boron were determined successfully and compared with reference values.  相似文献   

17.
Two new sodium aluminum borates, Na3AlB8O15 and Na3Al2B7O15, have been successfully synthesized by the high-temperature solution method. They crystallize in the different space groups, P21/c and P2/c, respectively. The B−O configurations of β-Na2B6O10, Na3AlB8O15 and Na3Al2B7O15 are compared to feature complicated different dimensional open-framework structures caused by the substitution of [BO4] by [AlO4] covalent tetrahedra. Moreover, the experimental results indicate that Na3AlB8O15 and Na3Al2B7O15 have short ultraviolet (UV) cutoff edges (<187 nm). The first-principles calculations show that Na3AlB8O15 and Na3Al2B7O15 have moderate birefringence (0.075 and 0.041@1064 nm, respectively).  相似文献   

18.
Through extensive research on the PbO / PbBr2 / B2O3 system, a new single crystal of yellow lead‐containing oxyborate bromine, [O2Pb3]2(BO3)Br, was grown from the melt. It crystallizes in the centrosymmetric space group Cmcm (no. 63) of the orthorhombic system with the following unit cell dimensions: a = 9.5748(8) Å, b = 20.841(2) Å, c = 5.7696(5) Å, and Z = 4. The whole structure is characterized by an infinite one‐dimensional (1D) 1[O2Pb3] double chain, which is based on the OPb4 oxocentered tetrahedra and considered as the derivative of the continuous sheet of OPb4 tetrahedra from the tetragonal modification of α‐PbO. The 1D 1[O2Pb3] double chains are further bridged by the BO3 units through common oxygen atoms to form two‐dimensional (2D) 1[[(O2Pb3)(BO3)] layers, with Br atoms situated between the layers. IR spectroscopy, UV/Vis/NIR diffuse reflectance spectroscopy, and thermal analysis were also performed on the reported material.  相似文献   

19.
The title compound, Na+·C9H7N4O5S·2H2O, presents a Z configuration around the imine C=N bond and an E configuration around the C(O)NH2 group, stabilized by two intra­molecular hydrogen bonds. The packing is governed by ionic inter­actions between the Na+ cation and the surrounding O atoms. The ionic unit, Na+ and 2‐oxo‐3‐semicarbazono‐2,3‐dihydro‐1H‐indole‐5‐sulfonate, forms layers extending in the bc plane. The layers are connected by hydrogen bonds involving the water mol­ecules.  相似文献   

20.
Optical and vibrational studies have been carried out on 60B2O3·(20−x)Na2O·10PbO·10Al2O3:xTiO2 (x=0, 1, 2, 3, 4, and 5 mol%) glasses, in order to understand the role of TiO2 in the 60B2O3·20Na2O·10PbO·10Al2O3 glass matrix. The X-ray patterns reveal homogeneous glasses over the entire compositional range. The absorption spectra show that the energy of the optical band gap (ΔEopt) and Urbach's energy (EU) decreases as TiO2 content increases. The changes observed in the Raman and IR spectra are related to the BO4→BO3 back conversion effect and the appearance of “loose” BO4 groups. The data indicate that titanium ions act as a network modifier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号