首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ab initio molecular orbital and DFT calculations have been carried out for three most stable dimers of parent nitrosamine (NA) in order to elucidate the structures and energetics of the dimers. The structures were optimized using HF, B3LYP, and MP2 methods with 6‐311+G(d,p) and 6‐311++G(2d,2p) basis sets. At the optimized geometries obtained at MP2/6‐311++G(2d,2p) level of theory, the energies were evaluated at QCISD/aug‐cc‐pVDZ and CCSD/aug‐cc‐pVDZ levels. The most stable dimer has two N? H···O?N hydrogen bonds and the least stable dimer has two N? H···N?O hydrogen bonds. The natural bond orbital analysis showed that the lpO(N) → BD*(N? N) and lpO(N) → BD*(N? Hb) interactions play a decisive role in the stabilization of the NH···O(N) hydrogen bonds in dimers. The atoms in molecules results reveal that the intermolecular N? H···O(N) H‐bonds in dimers have electrostatic character. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

2.
In this article, the binding energies of 16 antiparallel and parallel β‐sheet models are estimated using the analytic potential energy function we proposed recently and the results are compared with those obtained from MP2, AMBER99, OPLSAA/L, and CHARMM27 calculations. The comparisons indicate that the analytic potential energy function can produce reasonable binding energies for β‐sheet models. Further comparisons suggest that the binding energy of the β‐sheet models might come mainly from dipole–dipole attractive and repulsive interactions and VDW interactions between the two strands. The dipole–dipole attractive and repulsive interactions are further obtained in this article. The total of N? H···H? N and C?O···O?C dipole–dipole repulsive interaction (the secondary electrostatic repulsive interaction) in the small ring of the antiparallel β‐sheet models is estimated to be about 6.0 kcal/mol. The individual N? H···O?C dipole–dipole attractive interaction is predicted to be ?6.2 ± 0.2 kcal/mol in the antiparallel β‐sheet models and ?5.2 ± 0.6 kcal/mol in the parallel β‐sheet models. The individual Cα? H···O?C attractive interaction is ?1.2 ± 0.2 kcal/mol in the antiparallel β‐sheet models and ?1.5 ± 0.2 kcal/mol in the parallel β‐sheet models. These values are important in understanding the interactions at protein–protein interfaces and developing a more accurate force field for peptides and proteins. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

3.
The conformational study of β‐thioaminoacrolein was performed at various theoretical levels, HF, B3LYP, and MP2 with 6‐311++G(d,p) basis set, and the equilibrium conformations were determined. To have more reliable energies, the total energies of all conformers were recomputed at high‐level ab initio methods, G2MP2, G3, and CBS‐QB3. According to these calculations, the intramolecular hydrogen bond is accepted as the origin of conformational preference in thialamine (TAA) and thiolimine groups. The hydrogen bond strength in various resonance‐assisted hydrogen bond systems was evaluated by HB energy, geometrical parameters, topological parameters, and charge transfers corresponding to orbital interactions. Furthermore, our results reveal that the TAA tautomer has extra stability with respect to the other tautomers. The population analyses of the possible conformations by NBO predict that the origin of this preference is mainly due to the π‐electron delocalization in framework of TAA forms, especially usual πC?C → π*C?S and Lp (N) → π*C?C charge transfers. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

4.
Theoretical calculations were performed to study the nature of the hydrogen bonds in the complexes HCHO···HSO, HCOOH···HSO, HCHO···HOO, and HCOOH···HOO. The geometric structures and vibrational frequencies of these four complexes at the MP2/6‐31G(d,p) and MP2/6‐311+G(d,p) levels are calculated by standard and counterpoise‐corrected methods, respectively. The results indicate that in the complexes HCHO···HSO and HCOOH···HSO the S? H bond is strongly contracted. In the S? H···O hydrogen bonds, the calculated blue shifts for the S? H stretching frequencies are in the vicinity of 50 cm?1. While in the complexes HCHO···HOO and HCOOH···HOO, the O? H bond is elongated and O? H···O red‐shifted hydrogen bonds are found. From the natural bond orbital analysis it can be seen that the X? H bond length in the X? H···Y hydrogen bond is controlled by a balance of four main factors in the opposite directions: hyperconjugation, electron density redistribution, rehybridization, and structural reorganization. Among them hyperconjugation has the effect of elongating the X? H bond. Electron density redistribution and rehybridization belong to the bond shortening effects, while structural reorganization has an uncertain influence on the X? H bond length. In the complexes HCHO···HSO and HCOOH···HSO, the shortening effects dominate which lead to the blue shift of the S? H stretching frequencies. In the complexes HCHO···HOO and HCOOH···HOO where elongating effects are dominant, the O? H···O hydrogen bonds are red‐shifted. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

5.
The1 Hartree–Fock crystal orbital (CO) method in its linear combination of atomic orbitals form was applied to determine the band structure of histone proteins taking 0.041e charge transfer per nucleotide base from the PO groups of poly(guanilic acid) to the arginine, and lysine side chains in histones (see text). Assuming that there are infinite COs, perpendicular to the main chain, formed by the amide groups of one segment of the protein chain bound together by H‐bonds with the C?O groups of another segment of the chain, we have calculated the band structure. From this, we have determined the mobility using the deformation potential approximation. Multiplying this with the mobile electron concentration due to the charge transfer between the PO groups of DNA and the positive side chains in histones, we have obtained for the direct current (D.C.) electron conductivity σfib = 1.07 × 10?9 Ω?1 cm for a single fiber and after division by the cross‐section of 9.10 × 10?16 cm2, σspec = 1.18 × 106 Ω?1 cm?1 for the specific conductivity. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

6.
The N-alkyl-C-polyfluoroalkyl-C-chlorosulfinimides RFC(Cl)SN R have been investigated. Some aspects of their thermal stability and their [3 + 2] and [3 + 1] cycloaddition reactions have been examined.  相似文献   

7.
Trimethylsilyltrifluoromethane sulfonate is shown to be an efficient catalyst for the elimination of Me3SiCl from N-trimethylsilyl-N-(2,4,6-tri-tert-butylphenyl)amidochlorophosphites la-f , leading to the phosphenimidous esters 3a–f. The crystal structures of phosphites 1a and 1d provide a stereochemical explanation for the better thermal stability of 1d On the basis of these observations a convenient and general synthesis of phosphenimidous esters 3a–f is presented.  相似文献   

8.
Catalytic insertion or addition of a metal‐imido/nitrene species, generated from reaction of a transition‐metal catalyst with iminoiodanes, to C? H and C?C bonds offers a convenient and atom economical method for the synthesis of nitrogen‐containing compounds. Following this groundbreaking discovery during the second half of the last century, the field has received an immense amount of attention with a myriad of impressive metal‐mediated methods for the synthesis of amines and aziridines having been developed. This review will cover the significant progress made in improving the efficiency, versatility and stereocontrol of this important reaction. This will include the various iminoiodanes, their in situ formation, and metal catalysts that could be employed and new ligands, both chiral and non‐chiral, which have been designed, as well as the application of this functional group transformation to natural product synthesis and the preparation of bioactive compounds of current therapeutic interest. DOI 10.1002/tcr.201100018  相似文献   

9.
A theoretical study of the C? H···N hydrogen bond in the interactions of trihalomethanes CHX3 (X = F, Cl, Br) with ammonia and its halogen derivatives NH2Y (Y = F, Cl, Br) has been carried out thoroughly. The complexes are quite stable, and their stability increases in going from CHF3 to CHCl3 then to CHBr3 when Y keeps unchanged. With the same CHX3 proton donor, enhancement of the gas phase basicity of NH2Y strengthens stability of the CHX3···NH2Y complex. The C? H···N hydrogen bond strength is directly proportional to the increase of proton affinity (PA) at N site of NH2Y and the decrease of deprotonation enthalpy (DPE) of C? H bond in CHX3. The CHF3 primarily appears to favor blue shift while the red‐shift is referred to the CHBr3. The blue‐ or red‐shift of CHCl3 strongly depends on PA at N site of NH2Y. We suggest the ratio of DPE/PA as a factor to predict which type of hydrogen bond is observed upon complexation. The SAPT2+ results show that all C? H···N interactions in the complexes are electrostatically driven regardless of the type of hydrogen bond, between 48% and 61% of the total attractive energy, and partly contributed by both induction and dispersion energies.  相似文献   

10.
Fused dihydrooxazoles are produced by the reaction of 8‐bromoteophylline (1), 6‐bromo‐2‐pyridone (7), or 2‐bromobenzimidazole (11) with an N‐substituted N‐(2,3‐epoxypropyl)amine. The product derived from 1 undergoes rearrangement to a fused dihydrooxazine while the fused dihydrooxazoles derived from 7 and 11 are stable. J. Heterocyclic Chem., (2011).  相似文献   

11.
To elucidate the nature of the Al? H···H? O dihydrogen bond and its effect on the reaction between diphenylmethanol and pyrazolate‐bridged dialuminum complex, a theoretical study was carried out using the ONIOM(B3LYP/6‐31+G(d,p):AM1) method. Calculations indicate that this reaction is a two‐step process. The first step is nucleophilic addition and the resulting intermediate is stabilized by an Al? H···H? O dihydrogen bond. Topology analyses based on the “atoms‐in‐molecules” theory show that the Al? H···H? O dihydrogen bond in dialuminum intermediate is stronger than normal hydrogen bond. This step is not barrierless, which is contrary to the result predicted by using simplified model. The second step, eliminating a molecule of dihydrogen, requires an activation free energy of 9.9 kcal/mol in gas phase, which implies the simplified model underestimates the energy barrier of this elimination step. ONIOM calculations also show that, using the simplified model without zero‐point energy correction, the dihydrogen bonding strength has been underestimated and unreliable results have been obtained. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

12.
Correlated ab initio molecular orbital, DFT, QCISD, G3MP2, and QCISD(T) calculations have been used to investigate the geometries, energetics, and mechanisms governing the insertion reactions of 1CH2 into O H and N H bonds of water and ammonia, respectively, in gas phase adopting 6‐311++g(d, p) basis set. It is found that 1CH2 reacts with water and ammonia to produce the ylide‐like intermediates H2C OH2 and H2C NH3, which in turn undergo 1,2‐hydrogen shift to produce methanol and methylamine, respectively. Results obtained indicate that in the gas phase, the ylides and the transition states are located below the reactants' energy levels. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

13.
Three new patterns of reactivity of rare‐earth metal methylidene complexes have been established and thus have resulted in access to a wide variety of imido rare‐earth metal complexes [L3Ln32‐Me)33‐Me)(μ ‐ NR)] (L=[PhC(NC6H3iPr2‐2,6)2]?; R=Ph, Ln=Y ( 2 a ), Lu ( 2 b ); R=2,6‐Me2C6H3, Ln=Y ( 3 a ), Lu ( 3 b ); R=p‐ClC6H4, Ln=Y ( 4 a ), Lu ( 4 b ); R=p‐MeOC6H4, Ln=Y ( 5 a ), Lu ( 5 b ); R=Me2CHCH2CH2, Ln=Y ( 6 a ), Lu ( 6 b )) and [{L3Lu32‐Me)33‐Me)}2(μ ‐ NR′N)] (R′=(CH2)6 ( 7 b ), (C6H4)2 ( 8 b )). Complex 2 b was treated with an excess of CO2 to give the corresponding carboxylate complex [L3Lu3(μ‐η11‐O2CCH3)3(μ‐η12‐O2C‐CH3)(μ‐η112‐O2CNPh)] ( 9 b ) easily. Complex 2 a could undergo the selective μ3‐Me abstraction reaction with phenyl acetylene to give the mixed imido/alkynide complex [L3Y32‐Me)33‐η113‐NPh)(μ3‐C?CPh)] ( 10 a ) in high yield. Treatment of 2 with one equivalent of thiophenol gave the selective μ3‐methyl‐abstracted products [L3Ln32‐Me)33‐η113‐NPh)(μ3‐SPh)] (Ln=Y ( 11 a ); Lu ( 11 b ). All new complexes have been characterized by elemental analysis, NMR spectroscopy, and most of the structures confirmed by X‐ray diffraction.  相似文献   

14.
A novel single‐electron sodium bond system of H3C···Na? H (I), H3C···Na? OH(II), H3C···Na? F(III), H3C···Na‐CCH(IV), H3C···Na? CN (V) and H3C···Na? NC (VI) complexes has been studied by using MP2/6‐311++G** and MP2/aug‐cc‐pVTZ methods for the first time. We demonstrated that the single‐electron sodium bond H3C···Na? Y formed between H3C and Na? Y (Y?H, OH, F, CCH, CN, and NC) could induce the Na? Y increased and stretching frequencies of I–IV and VI are red‐shifted, including the Na? N bond in complex V is blue‐shifted abnormally. The interaction energies are calculated at two levels of theory [MP2, CCSD(T)] with different basis. The results shows that the strength of binding bond in group 2 (IV–VI) with π electrons are stronger than that of group 1 (I–III) without π electrons. For all complexes, the main orbital interactions between moieties H3C and Na? Y are LP1(C)→LP*1(Na). By comparisons with some related systems, it is concluded that the strength of single‐electron bond is increased in the order: hydrogen bond < bromine bond < sodium bond < lithium bond. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

15.
RHF(UHF)+MP2 and CASSCF calculations of potential energy surfaces' sections of cations X  OH (XC,N,O) and corresponding neutral particles are performed. It is shown that all cations should be relatively stable both with respect to X  O bond breaking and intramolecular rearrangements. Reactions of electron capture by these cations are also studied. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 77: 580–588, 2000  相似文献   

16.
The reaction of di(isopropyl)aminophosphaethyne 1 with iodomethane or the methyl ester of trifluormethylsulfonic acid (methyl triflate) yields the ionic 1λ3, 3λ3-diphosphetene derivatives + X ( 2a : X = I; 2b : X = CF3SO3). On the basis of NMR spectroscopic and X-ray diffraction studies, the cation can be described as a combination of an amino-2-phosphaallylic cation and its methylated derivative.  相似文献   

17.
18.
19.
The bonding nature of the N N bonds in 1,2,5‐trinitroimidazole ( I ) and 1,2,4,5‐tetranitroimidazole ( II ) was examined with various levels of ab initio and density functional (DF) theories. The second‐order Møller–Plesset perturbation method (MP2) with the 6‐31G** basis set has predicted significantly long N N bond lengths in I and II , that is, 1.737 and 1.824 Å, respectively. Two DF theories, BLYP/6‐31G** and BP86/6‐31G**, provided similar results to those of MP2/6‐31G**. On the other hand, Hartree–Fock (HF) calculation with the 6‐311++G** basis set evaluated these bond lengths of I and II to be 1.443 and 1.414 Å, respectively. Bond properties including the bond critical density are strongly dependent on the equilibrium bond length. Thus, accurate prediction of geometric parameters is of particular importance to derive reliable bond properties. Especially, a substantial difference in bonding properties is observed when the electron correlation effect is included. According to our analyses with bonding natures and CHELPG charges at the MP2 level, (1) the N N bonds of I and II appear to have a significant ionic nature, and (2) the 1‐nitro group bears a considerable positive charge and has attractive electrostatic interactions with O atoms of adjacent nitro groups. Although all the theories utilized in this study predict that both I and II are stable in their potential‐energy surfaces, significantly long N N bond lengths calculated with MP2 and DF theories imply a strong hyperconjugation effect, which may explain a tendency to form a salt in these compounds easily. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 72: 145–154, 1999  相似文献   

20.
The B24F224− anion, which was formed as a minor by‐product when the B12H122− anion was treated with F2 in liquid HF, has been isolated as its N(n‐Bu)4+ salt and characterized by 10B, 11B, and 19F NMR spectroscopy, electrospray mass spectrometry, cyclic voltammetry, single‐crystal X‐ray diffraction, and calculations at the DFT level of theory. The B24F224− anion has idealized D5 symmetry and consists of two B12F112− icosahedra linked by a 2c–2e boron–boron single bond with a B B distance of 1.725(4) Å. In the solid state, the anion interacts with eight N(n‐Bu)4+ cations via a network of 34 CH···FB hydrogen bonds with H· · ·F distances that range from 2.26 to 2.55 Å. These hydrogen bonds were successfully modeled by DFT calculations, which showed that the hydrogen bonds probably have a measurable, albeit subtle, effect on the structure of the B24F224−. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:181–187, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20220  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号