首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polysiloxanes are commonly used in a myriad of applications, and the “click” nature of the thiol‐ene reaction is well suited for introducing alternative functionalities or for crosslinking these ubiquitous polymers. As such, understanding of the thiol‐ene reaction in the presence of silicones is valuable and would lead to enhanced methodologies for modification and crosslinking. Here, the thiol‐ene reaction kinetics were investigated in functionalized oligosiloxanes having varying degrees of thiol functionalization (SH), π–π interactions (from diphenyls, DP), and ene types (C?C). In the ene‐functionalized oligomers, π–π interactions were controlled through the use of dioctyl repeats (DO). The polymerization rate and rate‐limiting steps were determined for all systems containing an allyl‐functionalized oligomer, and rates ranging from 0.10 to 0.54 mol L?1 min?1 were seen. The rate‐limiting step varied with the oligomer composition; examples of rate‐limited propagation (5:3:2 C?C:DP:DO/1:1 SH:DP) or chain transfer (5:3:2 C?C:DP:DO/3:1 SH:DP) were found in addition to cases with similar reaction rate constants (5:2:3 C?C:DP:DO/1:1 SH:DP). None of the siloxanes were found to exhibit autoacceleration despite their relatively high viscosities. Instead, the allyl‐, vinyl‐, and acrylate‐functionalized siloxanes were all found to undergo unimolecular termination based on their high α scaling values (0.98, 0.95, and 0.82, respectively) in the relation RpRiα. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

2.
An enzymatic one‐pot route in bulk was used to synthesize tetraallyl ether (tAE) functional oligomers based on divinyl adipate, 1,4‐butanediol and trimethylolpropane diallyl ether. By using lipase B from Candida antarctica as catalyst and varying the stoichiometric ratio of monomers, it was possible to reach targeted molecular weights (from 1300 to 3300 g mol?1) of allyl‐ether functional polyesters. The enzyme catalyzed reaction reached completion (>98% conversion based on all monomers) within 24 h at 60 °C, under reduced pressure (72 mbar) resulting in ~90% yield after filtration. The tAE‐functional oligoesters were photopolymerized, without any purification other than removal of the enzyme by filtration, with thiol functional monomers (dithiol, tetrathiol) in a 1:1 ratio thiol‐ene reaction. The photo‐initiator, 2,2‐dimethoxy‐2‐phenylacetophenone, was used to improve the rate of reaction under UV light. High conversions (96–99% within detection limits) were found for all thiol‐ene films as determined by FT‐Raman spectroscopy. The tAE‐functional oligoesters were characterized by NMR, MALDI, and SEC. The UV‐cured homopolymerized films and the thiol‐ene films properties were characterized utilizing DSC and DMTA. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
A simple and facile strategy for the functionalization of commercial poly(ε‐caprolactone) diols (PCLs) with pendant functionalities at the polymer chain termini is described. Well‐defined allyl‐functionalized PCLs with varying numbers of allyl end‐block side‐groups were synthesized by cationic ring‐opening polymerization of allyl glycidyl ether using PCL diols as macroinitiators. Further functionalization of the allyl‐functionalized PCLs was realized via the UV‐initiated radical addition of a furan‐functionalized thiol to the pendant allyl functional groups, showing the suitability for post‐modification of the PCL materials. Changes in polymer structure as a result of varying the number of pendant functional units at the PCL chain termini were demonstrated. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 928–939  相似文献   

4.
Photocurable, ternary‐component mixtures of a 1:1 molar multifunctional thiol–ene (trithiol and triallyl ether) blend and a 16‐functional acrylate based monomer have been photopolymerized, and the final film properties of the ternary crosslinked networks have been measured. The photopolymerization kinetics, morphology, and mechanical and physical properties of the films have been investigated with real‐time infrared, atomic force microscopy, and dynamic mechanical analysis. The photopolymerization process is a combination of acrylate homopolymerization and copolymerizations of thiol with allyl ether and acrylate functionalities. The tan δ peaks of the photopolymerized ternary systems are relatively narrow and tunable over a large temperature range. The morphology is characterized by a distinct phase‐separated nanostructure. The photocured thiol–ene/acrylate ternary systems can be made to exhibit good mechanical properties with enhanced energy absorption at room temperature by the appropriate selection of each component concentration. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 822–829, 2007.  相似文献   

5.
A series of well‐defined allyl‐ether functionalized polyester dendrimers has been synthesized via the divergent approach using traditional esterification reactions. Two commercially available trifunctional thiols, trimethylolpropane tri(3‐mercaptopropanoate) (TRIS) and ethoxylated trimethylolpropane tri(3‐mercaptopropanoate) (ETTMP), were incorporated with the dendrimers into the thiol‐ene polymer networks. The thiol‐ene reactions were conducted at room temperature and cured by UV light without the addition of photoinitiatior. Highly crosslinked films were obtained and characterized with respect to mechanical (DMA) and thermal (DSC and TGA) properties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 589–601, 2009  相似文献   

6.
Two new ring opening polymerization (ROP) initiators, namely, (3‐allyl‐2‐(allyloxy)phenyl)methanol and (3‐allyl‐2‐(prop‐2‐yn‐1‐yloxy)phenyl)methanol each containing two reactive functionalities viz. allyl, allyloxy and allyl, propargyloxy, respectively, were synthesized from 3‐allylsalicyaldehyde as a starting material. Well defined α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy bifunctionalized poly(ε‐caprolactone)s with molecular weights in the range 4200–9500 and 3600–10,900 g/mol and molecular weight distributions in the range 1.16–1.18 and 1.15–1.16, respectively, were synthesized by ROP of ε‐caprolactone employing these initiators. The presence of α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone)s was confirmed by FT‐IR, 1H, 13C NMR spectroscopy, and MALDI‐TOF analysis. The kinetic study of ROP of ε‐caprolactone with both the initiators revealed the pseudo first order kinetics with respect to ε‐caprolactone consumption and controlled behavior of polymerization reactions. The usefulness of α‐allyl, α′‐allyloxy functionalities on poly(ε‐caprolactone) was demonstrated by performing the thiol‐ene reaction with poly(ethylene glycol) thiol to obtain (mPEG)2‐PCL miktoarm star copolymer. α‐Allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone) were utilized in orthogonal reactions i.e copper catalyzed alkyne‐azide click (CuAAC) with azido functionalized poly(N‐isopropylacrylamide) followed by thiol‐ene reaction with poly(ethylene glycol) thiol to synthesize PCL‐PNIPAAm‐mPEG miktoarm star terpolymer. The preliminary characterization of A2B and ABC miktoarm star copolymers was carried out by 1H NMR spectroscopy and gel permeation chromatography (GPC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 844–860  相似文献   

7.
Radical catalyzed thiol‐ene reaction has become a useful alternative to the Hüisgen‐type azide‐yne click reaction as it helps expand the variability in reaction conditions as well as the range of clickable entities. In this study, the direct generation of a hyperbranched polyether (HBPE) having decyl units at the periphery and a pendant allyl group on every repeat unit of the polymer backbone is described; the allyl groups serve as a reactive handle for postpolymerization modifications and permits the generation of a variety of internally functionalized HBPEs. In this design, the AB2 monomer carries two decylbenzyl ether units (B‐functionality), an aliphatic ? OH (A‐functionality) and a pendant allyl group within the spacer segment; polymerization of the monomer readily occurs at 150 °C via melt transetherification process by continuous removal of 1‐decanol under reduced pressure. The resulting HBPE has a hydrophobic periphery due to the presence of numerous decyl chains, while the allyl groups that remain unaffected during the melt polymerization provides an opportunity to install a variety of functional groups within the interior; thiol‐ene click reaction with two different thiols, namely 3‐mercaptopropionic acid and mercaptosuccinic acid, generated interesting amphiphilic structures. Preliminary field emission scanning electron microscope (FESEM) and Atomic Force Microscopy (AFM) imaging studies reveal the formation of fairly uniform spherical aggregates in water with sizes ranging from 200 to 400 nm; this suggests that these amphiphilic HBPs is able to reconfigure to generate jellyfish‐like conformations that subsequently aggregate in an alkaline medium. The internal allyl functional groups were also used to generate intramolecularly core‐crosslinked HBPEs, by the use of dithiol crosslinkers; gel permeation chromatography traces provided clear evidence for reduction in the size after crosslinking. In summary, we have developed a simple route to prepare core‐clickable HBPEs and have demonstrated the quantitative reaction of the allyl groups present within the interior of the polymers; such HB polymeric systems that carry numerous functional groups within the core could have interesting applications in analyte sequestration and possibly sensing, especially from organic media. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4125–4135  相似文献   

8.
Aliphatic polycarbonate (PC) copolymer is synthesized by ring opening copolymerization of acrylate‐ and allyl‐functional cyclic carbonate monomers. The post‐polymerization functionalization of the resulting copolymer is performed quantitatively using a variety of thiol compounds via sequential Michael addition and photo‐induced radical thiol‐ene click reactions within relatively short reaction time at ambient temperature. This metal‐free click chemistry methodology affords the synthesis of biocompatible PC copolymer with multifunctional groups. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1581–1587  相似文献   

9.
The formation of reactive substrates with iniferter‐mediated living radical photopolymerization is a powerful technique for surface modification, which can readily be used to facilitate the incorporation of a variety of surface functionalities. In this research, the photopolymerization kinetics of novel bulk thiol–ene systems have been compared with those of typical acrylate and methacrylate systems when polymerized in the presence of the photoiniferter p‐xylene bis(N,N‐diethyl dithiocarbamate) (XDT). In the presence of XDT, the thiol–ene systems photopolymerize more quickly than the traditional acrylate and methacrylate systems by one to two orders of magnitude. Fourier transform infrared spectroscopy has been used to monitor the photografting kinetics of various monomers on dithiocarbamate‐functionalized surfaces. Furthermore, this technique has been used to evaluate surface‐initiation kinetics and to emphasize the influence of bulk substrate properties on grafting kinetics. Finally, photopatterning has been demonstrated on a dithiocarbamate‐incorporated thiol–ene substrate with conventional photolithographic techniques. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2134–2144, 2005  相似文献   

10.
We demonstrated the successful postfunctionalization of poly(oxanorbornene imide) (PONB) with two types of double bonds using sequential orthogonal reactions, nucleophilic thiol‐ene coupling via Michael addition and radical thiol‐ene click reactions. First, the synthesis of PONB with side chain acrylate groups is carried out via ring‐opening metathesis polymerization and nitroxide radical coupling reaction, respectively. Subsequently, the resulting polymer having two different orthogonal functionalities, main chain vinyl and side chain acrylate, is selectively modified via two sequential thiol‐ene click reactions, nucleophilic thiol‐ene coupling via Michael addition and photoinduced radical thiol‐ene. The orthogonal reactivity of two diverse double bonds, vinyl and acrylate functionalities, for the abovementioned consecutive thiol‐ene click reactions was first demonstrated on the model compound. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
Thiol oligomers were copolymerized with a triallyl ether by a photoinduced polymerization process. These oligomeric thiol‐ene systems comprise the same components as a photopolymerized thiol‐ene‐acrylate ternary system, yet the photopolymerized networks have much lower glass transition temperatures. An investigation into the effect of oligomeric thiol design on network formation was conducted by analyzing the reaction kinetics and thermal/mechanical properties of the thiol‐ene networks. Real‐time FTIR analysis shows that total conversion is >90% for all thiols investigated. Photo‐DSC analysis shows that the maximum exotherm rate is roughly equivalent for all of the thiols when the equivalent weight of the thiol is taken into account. As would be expected, the glass transition temperature and tensile strength increase with thiol functionality and lower thiol equivalent weight for thiols with functionality from 2 to 4. Films made using the oligomeric thiols have essentially the same glass transition temperatures and tensile modulus values regardless of thiol design. These results distinguish the method for generation of networks consisting of an initial Michael reaction of thiols and acrylates followed by a photoinitiated copolymerization with a multifunctional ene from the traditional photolysis of the corresponding thiol‐ene‐acrylate ternary systems with no Michael reaction. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 14–24, 2009  相似文献   

12.
Ester‐free silane and siloxane‐based thiol monomers were successfully synthesized and evaluated for application in thiol‐ene resins. Polymerization reaction rates, conversion, network properties as well as degradation experiments of those thiol monomers in combination with triallyl‐1,3,5‐triazine‐2,4,6(1H,3H,5H)‐trione (TATT) as ene component were performed and compared with formulations containing the commercially available mercaptopropionic ester‐based thiol pentaerythritol tetra‐3‐mercaptopropionate. Kinetic analysis revealed appropriate reaction rates and conversions reaching 90% and higher. Importantly, storage stability tests of those formulations clearly indicate the superiority of the synthesized mercaptans compared with pentaerythritol tetra‐3‐mercaptopropionate/TATT resins. Moreover, photocured samples containing silane‐based mercaptans provide higher glass transition temperatures and withstand water storage without a significant loss in their network properties. This behavior together with the observed excellent degradation resistance of photocured silane‐based thiol/TATT formulations make these multifunctional mercaptans interesting candidates for high‐performance applications, such as dental restoratives and automotive resins. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 418–424  相似文献   

13.
Since extraction of the naturally occurring mussel‐foot proteins is expensive and time‐consuming, routes towards synthetic analogues are continuously being explored. Often, these methods involve several protection and deprotection steps, making the synthesis of synthetic analogues time‐consuming and expensive as well. Herein, we show that UV‐initiated thiol‐ene coupling between a thiol‐functional dopamine derivative and an allyl‐functional aliphatic polycarbonate can be used as a fast and facile route to dopa‐functional materials. Different thiol‐to‐allyl ratios and irradiation protocols were used and it was found that nearly 50% of the allyl groups could be functionalized with dopa within short reaction times, without the need of protecting the catechol. It is also demonstrated herein that the dopa‐functional polymers can be used to form self‐healing gels through complexation with Fe3+ ions at increased pH. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2370–2378  相似文献   

14.
Poly(caprolactone) (PCL) networks have received significant attention in the literature because of many emerging potential applications as biodegradable materials. In this study, the Michael addition reaction was used for the first time to synthesize biodegradable networks using crosslinking of acetoacetate‐functionalized PCL (PCL bisAcAc) oligomers with neopentyl glycol diacrylate. Hydroxyl‐terminated PCL telechelic oligomers with number‐average molecular weights ranging from 1000 to 4000 g/mol were quantitatively functionalized with acetoacetate groups using transacetoacetylation. In addition to difunctional PCL oligomers, hydroxyl‐terminated trifunctional star‐shaped PCL oligomers were functionalized with acetoacetate groups. Derivatization of the terminal hydroxyl groups with acetoacetate groups was confirmed using FTIR spectroscopy, 1H NMR spectroscopy, mass spectrometry, and base titration of hydroxyl end groups. PCL bisAcAc precursors were reacted with neopentyl glycol diacrylate in the presence of an organic base at room temperature. The crosslinking reactions yielded networks with high gel contents (>85%). The thermomechanical properties of the networks were analyzed to investigate the influence of molecular weight between crosslink points. The glass transition and the extent of crystallinity of the PCL networks were dependent on the molecular weight of the PCL segment. Dynamic mechanical analysis indicated that the plateau modulus of the networks was dependent on the molecular weight of PCL, which was related to the crosslink density of the networks. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5437–5447, 2009  相似文献   

15.
In this study, we used click chemistry to synthesize new linear polypeptide‐g‐pyrene polymers from a mono‐azido‐functionalized pyrene derivative (N3‐Py) and several poly(γ‐propargyl‐l ‐glutamate) (PPLG) oligomers. Incorporating the pyrene units as side chains enhanced the α‐helical conformations of these PPLG oligomers in the solid state, as determined using Fourier transform infrared (FTIR) spectroscopy; it also increased the temperature stability of the α‐helical secondary structures of the grafted PPLG oligomers, relative to those of the pure PPLG species, as revealed through temperature‐dependent FTIR spectroscopic analyses. In addition, the thermal properties of the PPLG‐g‐Py polypeptides (e.g., glass transition temperatures increased by ca. 100 °C) were superior to those of pure PPLG oligomers. Mixing the PPLG‐g‐Py oligomers with multiwalled carbon nanotubes (MWCNTs) in dimethylformamide led to the formation of highly dispersible PPLG‐g‐Py/MWCNT organic/inorganic hybrid complex materials. Fluorescence emission spectra revealed significant π–π stacking between the PPLG‐g‐Py oligomers and the MWCNTs in these complexes. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 321–329  相似文献   

16.
Thiol–ene photocurable systems based on a trifunctional thiol [trimethylolpropane tris‐(3‐mercaptopropanoate)] and two different multifunctional allyl ethers (trimethylolpropane triallyl ether and Boltorn U2, an allyl functional dendritic polyester) were examined. To these systems, small amounts (<1 wt %) of fluorinated allyl ethers were added for the modification of their surface properties. Two new fluorinated allyl ethers, 1H,1H‐perfluoro‐1‐heptylallyl ether and 1H,1H‐perfluoro‐1‐decylallyl ether, were synthesized for this purpose by allylation of the corresponding 1H,1H‐perfluoro alcohols. The fluorinated monomers, despite their very low concentrations, caused sharp changes in the surface properties of the films and in the solvent resistance without any changes in the curing conditions and bulk properties. Completely hydrophobic surfaces were obtained (as a result of the selective enrichment of the fluorinated monomers on the film surfaces) that depended on the monomer structure and its concentration. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2583–2590, 2002  相似文献   

17.
The thiol–ene radical addition reaction has been successfully used to synthesize polyphosphazene derivatives. Poly[bis(allylamino)phosphazene] with pendant allyl groups was reacted with different thiol reagents under UV irradiation. These thiol reagents include 1‐pentanethiol, 3‐mercaptopropionic acid, 3‐mercapto‐1,2‐propane‐diol, and 2,3,4,6‐tetra‐O‐acetyl‐1‐thio‐β‐D ‐glucopyranose. 1H NMR analyses confirm that the allyl polyphosphazene can be quantitatively modified by the mercaptans. In total, 100% conversion of the allyl groups was reached in <60 min toward the first three mercaptans, whereas about 80% conversion of the allyl groups was reached after 120‐min reaction toward the thioglucose. This method is a facile route for the synthesis of functional polyphosphazenes without the needs for protection/deprotection procedures. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
A polybenzoxazine bearing allyl group in the side chain was synthesized by the ring‐opening polymerization of N‐allyl‐benzoxazine and was crosslinked by the two different processes, (1) thermally induced oligomerization of the allyl side chains and (2) radical addition of dithiol (thiol‐ene reaction) to the allyl side chains. The former process was promoted by adding 2,5‐dimethyl‐2,5‐di(tert‐butylperoxy)hexane as a radical source, leading to the improved yield of the networked polymer isolated as acetone‐insoluble fraction. The thiol‐ene reaction with using 1,6‐hexanedithiol was also an efficient method for crosslinking the polybenzoxazine. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
A series of alkyl α‐hydroxymethacrylate derivatives with various secondary functionalities (ether, ester, carbonate, and carbamate) and terminal groups (alkyl, cyano, oxetane, cyclic carbonate, phenyl and morpholine) were synthesized to investigate the effect of intermolecular interactions, H‐bonding, π–π interactions, and dipole moment on monomer reactivity. All of the monomers except one ester and one ether derivative are novel. The polymerization rates, determined by using photo‐DSC, showed the average trend (aromatic carbamate > hydroxyl > ester > carbonate ~ aliphatic carbamate ~ ether), with several exceptions due to the differences in terminal groups. There is a correlation between the chemical shift differences of the double bond carbons, the calculated dipole moments, and the reactivities only for nonhydrogen bonded monomers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
We report the synthesis of high‐molecular‐weight linear polyisobutylenes (PIBs) and PIB networks from low‐molecular‐weight PIB by thiol‐ene click chemistry. Thus, liquid allyl‐telechelic PIB was reacted with small di‐ and tri‐thiols, and the thiolated intermediates chain‐extended by UV‐ or thermally induced free radical initiation to linear and crosslinked products. PIB networks were also prepared by crosslinking SH‐telechelic PIB with a small triallyl compound. Linear products were characterized by 1H NMR spectroscopy and GPC, and networks by FTIR spectroscopy, extractables, swelling, and permanent set. The effect of reaction conditions (nature of thiol chain extender, concentration of photo‐ and thermal initiators, UV radiation time, and reagent concentrations) on chain extension and crosslinking was investigated. Under well‐defined conditions high‐molecular‐weight PIBs and tight PIB networks were prepared. Thiol‐ene click chemistry provides novel thiolated PIB derivatives and is a useful strategy for the convenient preparation of high‐molecular‐weight rubbery PIBs and tight PIB networks from low‐molecular‐weight PIB precursors. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号