首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogallation of Me3Si–C≡C–NR'2 with R2Ga–H (R = tBu, CH2tBu, iBu) yielded Ga/N‐based active Lewis pairs, R2Ga–C(SiMe3)=C(H)–NR'2 ( 7 ). The Ga and N atoms adopt cis‐positions at the C=C bonds and show weak Ga–N interactions. tBu2GaH and Me3Si–C≡C–N(C2H4)2NMe afforded under exposure of daylight the trifunctional digallium(II) compound [MeN(C2H4)2N](H)C=C(SiMe3)Ga(tBu)–Ga(tBu)C(SiMe3)=C(H)[N(C2H4)2NMe] ( 8 ), which results from elimination of isobutene and H2 and Ga–Ga bond formation. 8 was selectively obtained from the ynamine and [tBu(H)Ga–Ga(H)tBu]2[HGatBu2]2. 7a (R = tBu; NR'2 = 2,6‐Me2NC5H8) and H8C4N–C≡N afforded the adduct tBu2Ga‐C(SiMe3)=C(H)(2,6‐Me2NC5H8) · N≡C–NC4H8 ( 11 ) with the nitrile bound to gallium. The analogous ALP with harder Al atoms yielded an adduct of the nitrile dimer or oligomers of the nitrile at room temperature. The reaction of 7a with Ph–N=C=O led to the insertion of two NCO groups into the Ga–Cvinyl bond to yield a GaOCNCN heterocycle with Ga bound to O and N atoms ( 12 ).  相似文献   

2.
Amination of the C‐isopropyldimethylsilyl P‐chlorophosphaalkene (iPrMe2Si)2C=PCl ( 1 ) leads to the P‐aminophosphaalkenes (iPrMe2Si)2C=PN(R)R′ (R, R′ = Me ( 2 ), R = H, R′ = nPr ( 3 ), R = H, R′ = iPr ( 4 ), R = H, R′ = tBu ( 5 ), R = H, R′ = 1‐Ada ( 6 ), R = H, R′ = CPh3 ( 7 ), R = H, R′ = Ph ( 8 ), R = H, RR′ = 2,6‐iPr2Ph (= DIP) ( 10 ), R = H, R′ = 2,4,6‐Me3Ph (= Mes) ( 11 ), R = H, R′ = 2,4,6‐tBu3Ph (= Mes*)] ( 12 ), R = H, R′ = SiMe3 ( 13 ), and R, R′ = SiMe2Ph (1 4 ). 31P‐NMR spectra confirm that phosphaalkenes 2 – 7 and 10 – 14 are monomeric in solution; the structures of 7 , 10 , and 12 were determined by X‐ray crystallography. Freshly prepared (iPrMe2Si)2C=PN(H)Ph ( 8 ) is a monomer that dimerizes with (N→C) proton migration within several hours to the stable diazadiphosphetidine [(iPrMe2Si)2CHPNPh]2 ( 9 ). NMR‐scale reactions of deprotonated 5 and 13 with tBuiPrPCl provide by P–P bond formation the P‐phosphanyl iminophosphoranes [(iPrMe2Si)2C=](RN=)PPtBu(iPr) [R = tBu ( 15 ), R = Me3Si ( 17 )]. Deprotonated 5 and Me3GeCl deliver by N–Ge bond formation the aminophosphaalkene (iPrMe2Si)2C=PN(tBu)GeMe3 ( 20 ), which with elemental selenium 5 undergoes (N→C) proton migration to form the alkyl(imino)(seleno)phosphorane [(iPrMe2Si)2CH](tBuN=)P=Se ( 21 ), which is a selenium‐bridged cyclic dimer in the solid state.  相似文献   

3.
A series of Al(III) and Sn(II) diiminophosphinate complexes have been synthesized. Reaction of Ph(ArCH2)P(?NBut)NHBut (Ar = Ph, 3 ; Ar = 8‐quinolyl, 4 ) with AlR3 (R = Me, Et) gave aluminum complexes [R2Al{(NBut)2P(Ph)(CH2Ar)}] (R = Me, Ar = Ph, 5 ; R = Me, Ar = 8‐quinolyl, 6 ; R = Et, Ar = Ph, 7 ; R = Et, Ar = quinolyl, 8 ). Lithiated 3 and 4 were treated with SnCl2 to afford tin(II) complexes [ClSn{(NBut)2P(Ph)(CH2Ar)}] (Ar = Ph, 9 ; Ar = 8‐quinolyl, 10 ). Complex 9 was converted to [(Me3Si)2NSn{(NBut)2P(Ph)(CH2Ph)}] ( 11 ) by treatment with LiN(SiMe3)2. Complex 11 was also obtained by reaction of 3 with [Sn{N(SiMe3)2}2]. Complex 9 reacted with [LiOC6H4But‐4] to yield [4‐ButC6H4OSn{(NBut)2P(Ph)(CH2Ph)}] ( 12 ). Compounds 3–12 were characterized by NMR spectroscopy and elemental analysis. The structures of complexes 6 , 10 , and 11 were further characterized by single crystal X‐ray diffraction techniques. The catalytic activity of complexes 5–8 , 11 , and 12 toward the ring‐opening polymerization of ε‐caprolactone (CL) was studied. In the presence of BzOH, the complexes catalyzed the ring‐opening polymerization of ε‐CL in the activity order of 5 > 7 ≈ 8 > 6 ? 11 > 12 , giving polymers with narrow molecular weight distributions. The kinetic studies showed a first‐order dependency on the monomer concentration in each case. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4621–4631, 2006  相似文献   

4.
Photolysis of t-BuHgCl/KI with PhC(R2)C(R1)NO2 forms PhC(R2)C(R1)Bu-t when R1 = R2 = H or in low yield when R1 = H, R2 = Ph. When R1 ≠ H, or when R2 = Ph, reactions with t-BuHgI/KI/hv proceed mainly via PhC(R2)C(R1)NO2·-, PhC(R2)C(R1)N(OBu-t)OHgX+, PhC(R2)C(R1)NO and PhC(R2)C(R1)N(OBu-t)HgX to form a variety of novel products including the dimeric bisnitronic esters ( 6 ) with R1 = Me or Ph and R2 = H; PhCH(R2)C(R1) = NOBu-t with R1 = Me or Ph and R2 = H or R1 = H and R2 = Ph; PhC(R2)(OBu-t)C(R1)NOH with R1 = H or Me and R2 = Ph; and 3-phenyl-2-R1-indoles with R1 = H, Me, Ph, PhS or t-BuS and R2 = Ph. Nitrosoaromatics react with t-BuHgX in the dark to form ArN(OBu-t)(OBu-t)HgX+ which condenses with ArNO to form the azoxy compound. tert-Butyl radicals will add to RNO2 [R = Ph, Ph2CCH, Ph2CC(Ph)] in the presence of t-BuHgI2 to form products derived from RN(OBu-t)OHgI+.  相似文献   

5.
The six‐, eight‐ and twelve‐membered cyclo‐siloxanes, cyclo‐[R2SiOSi(Ot‐Bu)2O]2 (R = Me ( 1 ), Ph ( 2 )), cyclo‐(t‐BuO)2Si(OSiR2)2O (R = Me ( 3 ), Ph ( 4 )), cyclo‐R2Si[OSi(Ot‐Bu)2]2O (R = Me ( 5 ), Ph ( 6 )) and cyclo‐[(t‐BuO)2Si(OSiMe2)2O]2 ( 3a ) were synthesized in high yields by the reaction of (t‐BuO)2Si(OH)2 and [(t‐BuO)2SiOH]2O with R2SiCl2 and (R2SiCl)2O (R = Me, Ph). Compounds 1 — 6 were characterized by solution and solid‐state 29Si NMR spectroscopy, electrospray mass spectrometry and osmometric molecular weight determination. The molecular structure of 4 has been determined by single crystal X‐ray diffraction and features a six‐membered cyclo‐siloxane ring that is essentially planar. The reduction of 1 — 6 with i‐Bu2AlH (DIBAL‐H) led to the formation of the metastable aluminosiloxane (t‐BuO)2Si(OAli‐Bu2)2 ( 7 ) along with Me2SiH2 and Ph2SiH2.  相似文献   

6.
Compounds of Silicon. 154 [1]. Unsaturated Silicon Compounds. 61 [1] Disilenes R*RSi=SiRR* (R* = SitBu3) with Silicon‐Bound Me and Ph Groups R: Formation, Identification, Thermolysis, Structure Dehalogenations of the 1, 2‐disupersilylsilanes R*MeBrSi—SiBrMeR* (gauche : trans 1.15 : 1.00) and R*PhClSi—SiBrPhR* (gauche : trans = 2.7 : 1.0) in THF with equimolar amounts of NaR* (R* = SitBu3 = Supersilyl) lead at —78 °C under exchange of bromine for sodium to the disilanides R*MeBrSi—SiNaMeR* and R*PhClSi—SiNaPhR* which are identified by protonation and bromination (formation of R*RXSi—SiX′RR* with R = Me, X/X′ = Br/H, Br/Br: gauche : trans = 1.15 : 1.00, and R = Ph, X/X′ = Cl/H, Cl/Br: gauche : trans = 2.7 : 10, respectively). These eliminate at about —55 °C NaHal with formation of non‐isolable trans‐R*MeSi=SiMeR* and isolable trans‐R*PhSi=SiPhR*. The intermediate existence of the disilene R*MeSi=SiMeR* could be proved by trapping it with PhC≡CPh (formation of a [2+2] cycloadduct; X‐ray structure analysis). In the absence of trapping agents, R*MeSi=SiMeR* decomposes into a mixture of substances, the main product of which is R*MeHSi—SiMeR*—SiHMeR*. The light yellow disilene R*PhSi=SiPhR* has been characterized by spectroscopy (Raman: ν(Si=Si) = 592 cm—1; UV/VIS: λmax = 398 nm with ∈ = 1560; 29Si‐NMR: δ(>Si=) = 128 ppm) and by X‐ray structure analysis (planar central framework >Si=Si<; Si=Si distance 2.182Å). R*PhSi=SiPhR* is reduced by lithium in THF with formation of a red radical anion which decomposes at room temperature into hitherto non‐identified products. At about 70 °C, R*PhSi=SiPhR* decomposes with intramolecular insertion of the Si=Si group into a C—H bond of a Ph group and with change of configuration of the R* groups, which at first are trans then cis‐positioned (X‐ray structure analysis of the thermolysis product).  相似文献   

7.
Treatment of N,N‐chelated germylene [(iPr)2NB(N‐2,6‐Me2C6H3)2]Ge ( 1 ) with ferrocenyl alkynes containing carbonyl functionalities, FcC≡CC(O)R, resulted in [2+2+2] cyclization and formation of the respective ferrocenylated 3‐Fc‐4‐C(O)R‐1,2‐digermacyclobut‐3‐enes 2 – 4 [R = Me ( 2 ), OEt ( 3 ) and NMe2 ( 4 )] bearing intact carbonyl substituents. In contrast, the reaction between 1 and PhC(O)C≡CC(O)Ph led to activation of both C≡C and C=O bonds producing bicyclic compound containing two five‐membered 1‐germa‐2‐oxacyclopent‐3‐ene rings sharing one C–C bond, 4,8‐diphenyl‐3,7‐dioxa‐2,6‐digermabicyclo[3.3.0]octa‐4,8‐diene ( 5 ). With N‐methylmaleimide containing an analogous C(O)CH=CHC(O) fragment, germylene 1 reacted under [2+2+2] cyclization involving the C=C double bond, producing 1,2‐digermacyclobutane 6 with unchanged carbonyl moieties. Finally, 1 selectively added to the terminal double bond in allenes CH2=C=CRR′ giving rise to 3‐(=CRR′)‐1,2‐digermacyclobutanes [R/R′ = Me/Me ( 7 ), H/OMe ( 8 )] bearing an exo‐C=C double bond. All compounds were characterized by 1H, 13C{1H} NMR, IR and Raman spectroscopy and the molecular structures of 3 , 4 , 5 , and 8 were established by single‐crystal X‐ray diffraction analysis. The redox behavior of ferrocenylated derivatives 2 – 4 was studied by cyclic voltammetry.  相似文献   

8.
[(BDI)Mg+][B(C6F5)4] ( 1 ; BDI=CH[C(CH3)NDipp]2; Dipp=2,6-diisopropylphenyl) was prepared by reaction of (BDI)MgnPr with [Ph3C+][B(C6F5)4]. Addition of 3-hexyne gave [(BDI)Mg+ ⋅ (EtC≡CEt)][B(C6F5)4]. Single-crystal X-ray analysis, NMR investigations, Raman spectra, and DFT calculations indicate a significant Mg-alkyne interaction. Addition of the terminal alkynes PhC≡CH or Me3SiC≡CH led to alkyne deprotonation by the BDI ligand to give [(BDI-H)Mg+(C≡CPh)]2 ⋅ 2 [B(C6F5)4] ( 2 , 70 %) and [(BDI-H)Mg+(C≡CSiMe3)]2 ⋅ 2 [B(C6F5)4] ( 3 , 63 %). Addition of internal alkynes PhC≡CPh or PhC≡CMe led to [4+2] cycloadditions with the BDI ligand to give {Mg+C(Ph)=C(Ph)C[C(Me)=NDipp]2}2 ⋅ 2 [B(C6F5)4] ( 4 , 53 %) and {Mg+C(Ph)=C(Me)C[C(Me)=NDipp]2}2 ⋅ 2 [B(C6F5)4] ( 5 , 73 %), in which the Mg center is N,N,C-chelated. The (BDI)Mg+ cation can be viewed as an intramolecular frustrated Lewis pair (FLP) with a Lewis acidic site (Mg) and a Lewis (or Brønsted) basic site (BDI). Reaction of [(BDI)Mg+][B(C6F5)4] ( 1 ) with a range of phosphines varying in bulk and donor strength generated [(BDI)Mg+ ⋅ PPh3][B(C6F5)4] ( 6 ), [(BDI)Mg+ ⋅ PCy3][B(C6F5)4] ( 7 ), and [(BDI)Mg+ ⋅ PtBu3][B(C6F5)4] ( 8 ). The bulkier phosphine PMes3 (Mes=mesityl) did not show any interaction. Combinations of [(BDI)Mg+][B(C6F5)4] and phosphines did not result in addition to the triple bond in 3-hexyne, but during the screening process it was discovered that the cationic magnesium complex catalyzes the hydrophosphination of PhC≡CH with HPPh2, for which an FLP-type mechanism is tentatively proposed.  相似文献   

9.
Establishing access to a bulky tetraaryl dilithiobutadiene (Ph*C)4Li2 (Ph*=3,5-tBu2(C6H3)) allowed for the synthesis of five-membered heterocycles with incorporated main-group elements. Along with an amino borole, a set of substituted pentaaryl boroles (Ph*C)4BAr has been synthesized. The examination of their absorption spectra and computational studies by means of DFT granted insight into the influence of peripheral substituents on the electronic features of the parent pentaphenyl borole (PhC)4BPh. Introduction of the more electron-rich Ph* residue at the carbon atoms increases the HOMO energy, redshifting the visible π/π*-absorption bands compared with the parent pentaphenyl borole. The influence on the frontier orbitals of three different boron-bound aryls with electronically modulating substituents in the remote 3,5-positions Ar=3,5-R2-C6H3 (R=Me, H, CF3) was studied. The substituents were found to increase (+I effect, Me) or decrease (−I effect, CF3) the LUMO energy, thus directly affecting the visible absorption spectra. This represents the first study on HOMO–LUMO-gap adjustments by a combined push–pull approach of a substituted pentaphenylborole.  相似文献   

10.
Reactions of carbon monoxide (CO) with tBu2MeSiLi and (E)‐(tBu2MeSi)(tBuMe2Si)C=Si(SiMetBu2)Li?2 THF ( 4 ) were studied both experimentally and computationally. Reaction of tBu2MeSiLi with CO in hexane yields the first stable tetra‐silyl di‐ketyl biradical [(tBu2MeSi)2COLi].2 ( 3 ). Reaction of 4 with CO yields selectively and quantitatively the first reported 1‐silaallenolate, (tBu2MeSi)(tBuMe2Si)C=C=Si(SiMetBu2)OLi?THF ( 5 ). Both 3 and 5 were characterized by X‐ray crystallography and biradical 3 also by EPR spectroscopy. Silaallenolate 5 reacts with Me3SiCl to produce siloxy substituted 1‐silaallene (tBu2MeSi)(tBuMe2Si)C=C=Si(SiMetBu2)OSiMe3. The reaction of 4 with CO provides a new route to 1‐silaallenes. The mechanisms of the reactions of tBuMe2SiLi and of 4 with CO were studied by DFT calculations.  相似文献   

11.
A series of complexes of the type [(TpR1,R2)M(X)] (Tp=trispyrazolylborato) with R1/R2 combinations Me/tBu, Ph/Me, iPr/iPr, Me/Me and for M=Mn or Fe coordinating [PzMe,tBu]? (Pz=pyrazolato) or Cl? as co‐ligand X has been synthesised. Although the chloride complexes were very unreactive and stable in air, the pyrazolato series was far more reactive in contact with oxidants like O2 and tBuOOH. The [(TpR1,R2)M(PzMe,tBu)] complexes proved to be active pre‐catalysts for the oxidation of cyclohexene with tBuOOH, reaching turnover frequencies (TOFs) ranging between moderate and good in comparison to other manganese catalysts. Cyclohexene‐3‐one and cyclohexene‐3‐ol were always found to represent the main products, with cyclohexene oxide occasionally formed as a side product. The ratios of the different oxidation products varied with the reaction conditions: in the case of a peroxide/alkene ratio of 4:1, considerably more ketone than alcohol was obtained and cyclohexene oxide formation was almost negligible, whereas a ratio of 1:10 led to a significant increase of the alcohol proportion and to the formation of at least small amounts of the epoxide. Pre‐treatment of the dissolved [(TpR1,R2)M(PzMe,tBu)] pre‐catalysts with O2 led to product distributions and TOFs that were very similar to those found in the absence of O2, so that it may be argued that tBuOOH and O2 both lead to the same active species. The results of EPR spectroscopy and ESI‐MS suggest that the initial product of the reaction of [(TpMe,Me)Mn(PzMe,tBu)] with O2 contains a MnIII(O)2MnIV core. Prolonged exposure to O2 leads to a different dinuclear complex containing three O‐bridges and resulting in different TOFs/product distributions. Analogous findings were made for other complexes and formation of these overoxidised products may explain the deviation of the catalytic performances if the reactions are carried out in an O2 atmosphere.  相似文献   

12.
The dialkylaluminum and dialkylgallium alkynides [R2E‐C≡C‐R′]2 (R = Me, CMe3; E = Al, Ga; R′ = Ph) containing C≡C triple bonds attached to their central aluminum or gallium atoms are easily obtained by the reactions of dialkylelement chlorides with lithium alkynides or by treatment of the corresponding alkyne R‐C≡C‐H with dialkylaluminum or dialkylgallium hydrides. The first reaction is favored by the precipitation of LiCl, the second one by the formation of elemental hydrogen. All products form dimers in which the carbanionic carbon atoms of the alkynido groups adopt bridging positions, but, interestingly, different types of molecular structures were observed depending on the steric demand of the substituents terminally attached to the aluminum or gallium atoms. The small methyl substituents gave structures in which the aluminum or gallium atoms seemed to be side‐on coordinated by the C≡C triple bonds of almost linear E‐C≡C groups. In contrast, the more bulky tert‐butyl groups forced an arrangement in which the C≡C triple bonds were perpendicular to the E‐E axis of the molecules. Different bonding modes result, which were analyzed by quantum‐chemical calculations.  相似文献   

13.
An alternative synthesis of C‐monoacetylenic phosphaalkenes trans‐Mes*P=C(Me)(C≡CR) (Mes* = 2, 4, 6‐tBu3Ph, R = Ph, SiMe3) from C‐bromophosphaalkenes cis‐Mes*P=C(Me)Br using standard Sonogashira coupling conditions is described. Crystallographic studies confirm cistrans isomerization of the P=C double bond during Pd‐catalyzed cross coupling, leading exclusively to trans‐acetylenic phosphaalkenes. Crystallographic studies of all synthesized compounds reveal the extend of π‐conjugation over the acetylene and P=C π‐systems.  相似文献   

14.
Hydrogallation Reactions Involving the Monoalkynes H5C6‐C≡C‐SiMe3 and H5C6‐C≡C‐CMe3cis/trans Isomerisation and Substituent Exchange Phenyl‐trimethylsilylethyne, H5C6‐C≡C‐SiMe3, reacted with different dialkylgallium hydrides, R2Ga‐H (R = Me, Et, nPr, iPr, tBu), by the addition of one Ga‐H bond to its C≡C triple bond (hydrogallation). The gallium atoms attacked selectively those carbon atoms, which were also attached to trimethylsilyl groups. The cis arrangement of Ga and H across the resulting C=C double bonds resulted only for the sterically most shielded di(tert‐butyl)gallium derivative, while in all other cases spontaneous cis/trans rearrangement occurred with the quantitative formation of the trans addition products. The diethyl compound Et2Ga‐C(SiMe3)=C(H)‐C6H5 ( 2 ) gave by substituent exchange the secondary products EtGa[C(SiMe3)=C(H)‐C6H5]2 ( 7 , Z,Z) and Ga[C(SiMe3)=C(H)‐C6H5]3 ( 8 ). Interestingly, compound 8 has two alkenyl groups with a Z configuration, while the third C=C double bond has the cis arrangement of Ga and H (E configuration). The reversibility of the cis/trans isomerisation of hydrogallation products was observed for the first time. tert‐Butyl‐phenylethyne gave the simple addition product, R2Ga(C6H5)=C(H)‐CMe3 ( 9 ), only with di(n‐propyl)gallium hydride.  相似文献   

15.
In this work, we report the preparation of multiple interpnictogen chain compounds with three consecutive pnictogen atoms and terminal Ar2Bi fragments (Ar=Ph, Mes). Symmetrical compounds of the form Ar2Bi−E(tBu)−Bi2Ar ( 1 : Ar=Ph, E=P; 2 : Ar=Ph, Mes, E=As) as well as ternary interpnictogen compounds of the form Ar2Bi−E1(tBu)−E2tBu2 (Ar=Ph, Mes; 4 : E1=P, E2=As; 5 : E1=P, E2=Sb; 6 : E1=As, E2=P) were prepared. The decomposition in solution at room temperature and under the influence of light was studied for compounds 1 – 6 . The reactivity of 1Ph and 2Ph with the small N-heterocyclic carbene 1,3,4,5-tetramethylimidazol-2-ylidene (Me2IMe) was also studied. In the case of 1Ph , the formation and consecutive decomposition of Me2IMe=PtBu ( 8 ) was observed in solution. Hence, it was shown that 1Ph can react as a “masked phosphinidene”. In the case of 2Ph , no reaction with Me2IMe was observed. All isolated compounds were analysed by NMR and IR spectroscopy, mass spectrometry, elemental analysis and single-crystal X-ray diffraction.  相似文献   

16.
We report on reactions of heteroleptic metallasilylenes L1(Cl)MSiL2 (M=Al 1 , Ga 2 , L1=HC[C(Me)NDipp]2, Dipp=2,6-iPr2C6H3; L2=PhC(NtBu)2) with CO2, N2O, and Me3SiN3, yielding the corresponding carbonate complexes L1(Cl)MOSi(CO32O,O−)L2 (M=Al 3 , Ga 4 ), silanoic esters L1(Cl)MOSi(O)L2 (M=Al 5 , Ga 6 ), and silaimine L1(Cl)GaSi(NSiMe3)L2 ( 8 ), whereas {L2Si[N(SiMe3)Al(Cl)C(Me)NDipp][CHC(Me)N(Dipp)]} 7 was formed by C−C bond cleavage of the L1 ligand. Compounds 3 – 8 were characterized by NMR (1H, 13C) and IR spectroscopy, elemental analysis and single crystal X-ray diffraction.  相似文献   

17.
Dilithiated N,N′‐dimethyl‐piperazine, LiCH2N(CH2CH2)2 NCH2Li ( 2 ) was prepared by transmetallation of N,N′‐bis(trimethylstannylmethyl)‐piperazine ( 1 ) with nBuLi and was isolated as a highly pyrophoric yellowish powder in high yield. Compound 2 was characterized by elemental analysis and was reacted as difunctional aminomethylating reagent with dialkyl‐earth metal chlorides, R2MCl (M = Al, Ga; R = Me, tBu) which resulted in the formation of spirocyclic adducts of N,N′‐bis(dialkylmetallamethyl)‐piperazine and unreacted dialkylmetal chlorides, [(Me2AlCl)Me2AlCH2N(CH2CH2)2NCH2AlMe2(ClAlMe2)] ( 3 ) and [(tBu2GaCl)tBu2GaCH2N(CH2CH2)2NCH2GatBu2(ClGatBu2)] ( 4 ) with five‐membered rings. Compounds 1 , 3 and 4 were identified by NMR‐spectroscopy (1H, 13C, 119Sn for 1 , 27Al for 3 ), mass spectra (EI, for 1 ) and by crystal structure determinations.  相似文献   

18.
A series of phosphorescent terpyridyl platinum(II) complexes with ancillary biphenylacetylide ligands, namely, [(R3tpy)PtC≡C(biphenyl)]X (R=tBu, H, or Et2N; tpy=2,2′;6′,2′′‐terpyridyl; X is an anion) were synthesized and structurally characterized by various spectroscopic techniques and X‐ray diffraction methods. Despite a lack of long alkyl chain(s) or hydrogen‐bonding motif(s), complexes [(tpy)PtC≡C(biphenyl)]Cl and [(tBu3tpy)PtC≡C(biphenyl)]X (X=Cl, ClO4, PF6, or BF4) were found to gelate water and organic solvents, respectively. The self‐aggregation of these complexes in solutions and the resulting gels were investigated with variable‐temperature (VT) 1H NMR spectroscopy, polarized optical microscopy, and absorption/emission spectroscopy. SEM micrographs on dry gels revealed entangled nanofibers with diameters of 20–40 nm and lengths of tens of micrometers. Powder X‐ray diffraction (PXRD) study revealed various degrees of crystallinity of these fibrillar nanostructures. The substituents on both the terpyridyl and acetylide ligands and counterion of these complexes play a profound but concerted role in tuning the intermolecular metal???metal and/or π–π interactions, and hence the gelation properties.  相似文献   

19.
Reaction of bromoacylsilane 1 (pink solution) with tBu2MeSiLi (3.5 equiv) in a 4:1 hexane:THF solvent mixture at ?78 °C to room temperature yields the solvent separated ion pair (SSIP) of silenyl lithium E‐[(tBuMe2Si)(tBu2MeSi)C=Si(SiMetBu2)]? [Li?4THF]+ 2 a (green–blue solution). Removal of the solvent and addition of benzene converts 2 a into the corresponding contact ion pair (CIP) 2 b (violet–red solution) with two THF molecules bonded to the lithium atom. The 2 a ? 2 b interconversion is reversible upon THF? benzene solvent change. Both 2 a and 2 b were characterized by X‐ray crystallography, NMR and UV/Vis spectroscopy, and theoretical calculations. The degree of dissociation of the Si?Li bond has a large effect on the visible spectrum (and thus color) and on the silenylic 29Si NMR chemical shift, but a small effect on the molecular structure. This is the first report of the X‐ray molecular structure of both the SSIP and the CIP of any R2E=E′RM species (E=C, Si; E′=C, Si; M=metal).  相似文献   

20.
Reaction of bromoacylsilane 1 (pink solution) with tBu2MeSiLi (3.5 equiv) in a 4:1 hexane:THF solvent mixture at −78 °C to room temperature yields the solvent separated ion pair (SSIP) of silenyl lithium E‐[(tBuMe2Si)(tBu2MeSi)C=Si(SiMetBu2)] [Li⋅4THF]+ 2 a (green–blue solution). Removal of the solvent and addition of benzene converts 2 a into the corresponding contact ion pair (CIP) 2 b (violet–red solution) with two THF molecules bonded to the lithium atom. The 2 a ⇌ 2 b interconversion is reversible upon THF⇌ benzene solvent change. Both 2 a and 2 b were characterized by X‐ray crystallography, NMR and UV/Vis spectroscopy, and theoretical calculations. The degree of dissociation of the Si−Li bond has a large effect on the visible spectrum (and thus color) and on the silenylic 29Si NMR chemical shift, but a small effect on the molecular structure. This is the first report of the X‐ray molecular structure of both the SSIP and the CIP of any R2E=E′RM species (E=C, Si; E′=C, Si; M=metal).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号