首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the coordination of alkanide and alkynide anions to the coordinatively unsaturated aluminium atoms of the methylene‐bridged dialuminium compound R2Al‐CH2‐AlR2 [ 1 , R = CH(SiMe3)2]. Treatment of 1 with the corresponding lithium derivatives in the presence of a small excess of TMEN (TMEN = tetramethylethylenediamine) yielded mono‐adducts [M]+[R2Al‐CH2‐AlR2R'] [ 2a , M = Li(TMEN)2, R' = Me; 2b , M = Li(TMEN)2, R' = n‐Bu; 3a , M = Li(TMEN)2, R' = C≡C‐SiMe3; 3b , M = Li(TMEN)2, R' = C≡C‐t‐Bu; 3d , M = Li(DME)3, R' = C≡C‐Ph; 3e , M = Li(TMEN)2, R' = C≡C‐PPh2)] and bis‐adducts [Li(TMEN)2]+[LiCH2(AlR2R')2] [ 4a , R' = C≡C‐CH2‐NEt2; 4b , R' = C≡C‐t‐Bu]. In the solid state the mono‐adducts have clearly separated coordinatively saturated (coordination number four) and unsaturated aluminium atoms (coordination number three). In solution the groups R' show a fast exchange between both aluminium atoms as evident from the room temperature NMR spectra that showed in most cases equivalent CH(SiMe3)2 groups despite different coordination spheres of the metal atoms. Only 2b gave the expected splitting of resonances at ambient temperature, while cooling was required to prevent the dynamic process for 3a . The dialkynide 4a has a unique molecular structure with one of the lithium cations bonded to the α‐carbon atoms of the alkynido ligands and to the carbon atom of the methylene bridge which is five‐coordinate with a distorted trigonal bipyramidal coordination sphere.  相似文献   

2.
Hydrogallation of Me3Si–C≡C–NR'2 with R2Ga–H (R = tBu, CH2tBu, iBu) yielded Ga/N‐based active Lewis pairs, R2Ga–C(SiMe3)=C(H)–NR'2 ( 7 ). The Ga and N atoms adopt cis‐positions at the C=C bonds and show weak Ga–N interactions. tBu2GaH and Me3Si–C≡C–N(C2H4)2NMe afforded under exposure of daylight the trifunctional digallium(II) compound [MeN(C2H4)2N](H)C=C(SiMe3)Ga(tBu)–Ga(tBu)C(SiMe3)=C(H)[N(C2H4)2NMe] ( 8 ), which results from elimination of isobutene and H2 and Ga–Ga bond formation. 8 was selectively obtained from the ynamine and [tBu(H)Ga–Ga(H)tBu]2[HGatBu2]2. 7a (R = tBu; NR'2 = 2,6‐Me2NC5H8) and H8C4N–C≡N afforded the adduct tBu2Ga‐C(SiMe3)=C(H)(2,6‐Me2NC5H8) · N≡C–NC4H8 ( 11 ) with the nitrile bound to gallium. The analogous ALP with harder Al atoms yielded an adduct of the nitrile dimer or oligomers of the nitrile at room temperature. The reaction of 7a with Ph–N=C=O led to the insertion of two NCO groups into the Ga–Cvinyl bond to yield a GaOCNCN heterocycle with Ga bound to O and N atoms ( 12 ).  相似文献   

3.
The synthesis and complete characterization of functional, highly Lewis acidic tris(pentafluoroethyl)silanes as well as tetrakis(perfluoroalkyl)silanes Si(C2F5)4 and Si(C2F5)3CF3 by direct fluorination is described. The reaction of SiCl4 with LiC2F5 invariably affords (pentafluoroethyl)fluorosilicates. To avoid silicate formation by fluoride transfer from LiC2F5 the Lewis acidity of the silane has to be decreased by electron‐donating substituents, such as dialkylamino groups. The easily accessible Si(C2F5)3NEt2 is a valuable precursor for a series of tris(pentafluoroethyl)silanes.  相似文献   

4.
Reaction of the donor‐stabilized silylene 1 (which is three‐coordinate in the solid state and four‐coordinate in solution) with BEt3 and BPh3 leads to the formation of the Lewis acid/base complexes 2 and 3 , respectively, which are the first five‐coordinate silicon compounds with an Si?B bond. These compounds were structurally characterized by crystal structure analyses and by multinuclear NMR spectroscopic studies in the solid state and in solution. Additionally, the bonding situation in 2 and 3 was analyzed by quantum chemical studies.  相似文献   

5.
Lewis acid‐catalyzed reactions of 2‐substituted cyclopropane 1,1‐dicarboxylates with 2‐naphthols is reported. The reaction exhibits tunable selectivity depending on the nature of Lewis acid employed and proceed as a dearomatization/rearomatization sequence. With Bi(OTf)3 as the Lewis acid, a highly selective dehydrative [3+2] cyclopentannulation takes place leading to the formation of naphthalene‐fused cyclopentanes. Interestingly, engaging Sc(OTf)3 as the Lewis acid, a Friedel–Crafts‐type addition of 2‐naphthols to cyclopropanes takes place, thus affording functionalized 2‐naphthols. Both reactions furnished the target products in high regioselectivity and moderate to high yields.  相似文献   

6.
7.
8.
A transition‐metal‐free transfer hydrogenation of 1,1‐disubstituted alkenes with cyclohexa‐1,4‐dienes as the formal source of dihydrogen is reported. The process is initiated by B(C6F5)3‐mediated hydride abstraction from the dihydrogen surrogate, forming a Brønsted acidic Wheland complex and [HB(C6F5)3]?. A sequence of proton and hydride transfers onto the alkene substrate then yields the alkane. Although several carbenium ion intermediates are involved, competing reaction channels, such as dihydrogen release and cationic dimerization of reactants, are largely suppressed by the use of a cyclohexa‐1,4‐diene with methyl groups at the C1 and C5 as well as at the C3 position, the site of hydride abstraction. The alkene concentration is another crucial factor. The various reaction pathways were computationally analyzed, leading to a mechanistic picture that is in full agreement with the experimental observations.  相似文献   

9.
Lewis acid or Brønsted acid catalyzed reactions of vinylidene cyclopropanes (VDCPs), 1 , with activated carbon–nitrogen, nitrogen–nitrogen, and iodine–nitrogen double‐bond‐containing compounds have been thoroughly investigated. We found that pyrrolidine and 1,2,3,4‐tetrahydroquinoline derivatives can be formed in good yields in the reactions of VDCPs 1 with ethyl (arylimino)acetates 2 by a [3+2] cycloaddition or intramolecular Friedel–Crafts reaction pathway. Based on these results, we found that activated carbon–nitrogen and nitrogen–nitrogen double‐bond‐containing compounds, such as N‐toluene‐4‐sulfonyl (N‐Ts) imines 5 and diisopropylazodicarboxylate ( 7 ), can also react with VDCPs 1 to give [3+2] cycloaddition products in moderate to good yields in the presence of a Lewis acid. When Ntert‐butoxycarbonyl aldimine 9 was used as the substrate, six‐membered cycloaddition products 10 and 11 were formed in moderate yields in the presence of a Brønsted acid, trifluoromethanesulfonic acid (TfOH). The reactions of VDCPs 1 with N‐Ts‐iminophenyliodinane ( 12 ) were also carried out in the presence of (CuOTf)2 ? C6H6 and it was found that nitrogen‐containing indene derivatives 13 were obtained, rather than the aziridination products. Plausible mechanisms for all of these transformations are discussed, based on the obtained results.  相似文献   

10.
Mn(SbF6)2 was prepared from MnF2 and SbF5 in aHF (anhydrous HF) and single crystals were obtained from the respective solution. The compound crystallises in the triclinic space group P 1 (No. 2) with a = 517.3(2) pm, b = 554.9(2) pm, c = 888.2(2) pm, α = 73.98(3)°, β = 89.17(2)°, γ = 62.54(2)° and Z = 1. MnGeF6 was prepared from MnF2 and GeF4 in aHF and by metathetical reaction between solutions of K2GeF6 in aHF and Mn(AsF6)2 in aHF. Attempt to isolate Mn(GeF5)2 prepared by metathetical reaction between solutions of XeF5GeF5 in aHF and Mn(AsF6)2 in aHF failed, although some slight evidences for its existence were obtained. Vibrational data of MnGeF6 are in agreement with lowering of the symmetry of GeF62– from Oh to C3i because of the site symmetry effects.  相似文献   

11.
This paper gives an account on hypervalent fluoro‐ and chloro(pentafluoroethyl)germanium compounds. The selective synthesis of the tris(pentafluoroethyl)dichlorogermanate salt [PNP][(C2F5)3GeCl2] as well as its X‐ray structural analysis is described. As a representative example for pentafluoroethylfluorogermanates, the synthesis and structure of 2,4,6‐triphenylpyryliumtris(pentafluoroethyl)difluorogermanate [C23H17O][(C2F5)3GeF2] is reported. Fluoride‐ion affinities for pentafluoroethylgermanes were calculated using quantum chemical methods, disclosing (C2F5)3GeF as a weaker Lewis acid than (C2F5)3SiF or (C2F5)3PF2. The theoretical results were confirmed by experiments and give the basis of a synthetic protocol for (C2F5)3GeF. Pentakis(pentafluoroethyl)germanate [PPh4][Ge(C2F5)5] was detected as an intermediate during the synthesis of [PPh4][(C2F5)4GeF] starting from tris(pentafluoroethyl)difluorogermanate and LiC2F5.  相似文献   

12.
Highly functionalized quinolines and pyridines could be synthesized by BF3?OEt2‐mediated reactions of vinyl azides with N‐aryl and N‐alkenyl aldimines, respectively. The reaction mechanism could be characterized as formal [4+2]‐annulation, including unprecedented enamine‐type nucleophilic attack of vinyl azides to aldimines and subsequent nucleophilic cyclization onto the resulting iminodiazonium ion moieties.  相似文献   

13.
Tris(trimethylsilyl)silyllithium ( 3 ) reacted with aldehydes and ketones (molar ratio 2 : 1) according to a modified Peterson mechanism under formation of transient silenes, which were immediately trapped by excess 3 to give the organolithium derivatives (Me3Si)3SiSi(SiMe3)2C(Li)R1R2 ( 7 ). Hydrolysis of 7 afforded the alkylpolysilanes (Me3Si)3SiSi(SiMe3)2CHR1R2 ( 8 ). Depending on the substituents R1 and R2, 7 proved to be rather unstable in THF solution and underwent a rapid rearrangement, involving a 1,3‐Si,C‐trimethylsilyl migration, resulting in the formation of the lithium silanides (Me3Si)2Si(Li)Si(SiMe3)2C(SiMe3)R1R2 ( 9 ), which were hydrolized during the aqueous workup to give the H‐silanes (Me3Si)2Si(H)Si(SiMe3)2C(SiMe3)R1R2 ( 10 ). Reaction of 9 with chlorotrimethylsilane produced the 1‐trimethylsilylalkylpolysilanes (Me3Si)3SiSi(SiMe3)2C(SiMe3)R1R2 ( 11 ). The structures of the products described were elucidated by comprehensive spectral analyses. The results of X‐ray crystal structure analyses, performed for 8 l (R1 = H, R2 = 2,4,6‐(MeO)3C6H2), 10 d (R1 = H, R2 = Mes) and 11 d (R1 = H, R2 = Mes) are discussed and confirm the expected extreme sterical congestion of the molecules.  相似文献   

14.
15.
16.
In this work it is shown that iron(III) and gold(I) triflimide efficiently catalyze the hydroaddition of a wide array of nucleophiles including water, alcohols, thiols, amines, alkynes, and alkenes to multiple C? C bonds. The study of the catalytic activity and selectivity of iron(III), gold(I), and Brønsted triflimides has unveiled that iron(III) triflimide [Fe(NTf2)3] is a robust catalyst under heating conditions, whereas gold(I) triflimide, even stabilized by PPh3, readily decomposes at 80 °C and releases triflimidic acid (HNTf2) that can catalyze the corresponding reaction, as shown by in situ 19F, 15N, and 31P NMR spectroscopy. The results presented here demonstrate that each of the two catalyst types has weaknesses and strengths and complement each other. Iron(III) triflimide can act as a substitute of gold(I) triflimide as a catalyst for hydroaddition reactions to unsaturated carbon–carbon bonds.  相似文献   

17.
Treatment of dichloromethyl‐tris(trimethylsilyl)silane (Me3Si)3Si–CHCl2 ( 1 ), prepared by the reaction of tris(trimethylsilyl)silane with chloroform in presence of potassium tertbutoxide, with organolithium reagents (molar ratio 1 : 3) affords the bis(trimethylsilyl)methyl‐disilanes Me3SiSiR2–CH(SiMe3)2 ( 12 a–d ) ( a : R = Me, b : R = n‐Bu, c : R = Ph, d : R = Mes). The formation of 12 a–d is discussed as proceeding through an exceptional series of isomerization and addition reactions involving intermediate silyl substituted carbenoids and transient silenes. The carbenoid (Me3Si)2PhSi–C(SiMe3)LiCl ( 8 c ) is moderately stable at low temperature and was trapped with water to give (Me3Si)2PhSi–CH(SiMe3)Cl ( 9 c ) and with chlorotrimethylsilane affording (Me3Si)2PhSi–CCl(SiMe3)2 ( 7 c ). For 12 d an X‐ray crystal structure analysis was performed, which characterizes the compound as a highly congested silane with bond parameters significantly deviating from standard values.  相似文献   

18.
19.
1-Trimethylsiloxyalkyl-bis(trimethylsilyl)silanes ( 5 ), obtained by a base induced isomerization of easily accessable 1-hydroxyalkyl-tris(trimethylsilyl)silanes ( 1 ) were hydrolized to give 1-hydroxyalkyl-bis(trimethylsilyl)silanes ( 6 ), which in presence of sodium hydride underwent a further 1,3-Si,O-trimethylsilyl migration resulting in the formation of 1-trimethylsiloxyalkyl-disilanes Me3SiSiH2–C(OSiMe3)R1R2 ( 7 ). Under acidic conditions, the alkoxysilanes 5 isomerized in a Me3Si/OSiMe3 exchange under formation of the 1-trimethylsilylalkyldisiloxanes 10 , which were hydrolyzed affording the silanols 11 . Chlorination of the H-silanes 5 with CCl4 gave the chlorosilanes 12 , which underwent rapid thermal isomerizations to give via the 1-chloroalkyldisiloxanes 13 the 1-trimethylsilylalkyl-chlorodisiloxanes 15 . Hydrolysis of 12 or 15 , resp., finally afforded the 1-trimethylsilylalkyl-silanediols 18 . Possible mechanisms of the various isomerization processes are discussed. The structures of the products described were elucidated by full spectral analyses. For 18 a the results of an X-ray structural analysis are given.  相似文献   

20.
The reaction of silicon atoms with methanol ( 4 ) has been studied in an argon matrix at 10 K. In the initial step a triplet n‐adduct T‐5 between a silicon atom and 4 is formed. It cannot be detected directly as long as a low concentration of 4 is used. But T‐5 must be generated since upon simultaneous irradiation during cocondensation methylsilanone ( 15 ) is found. Without irradiation T‐5 undergoes immediately O,H insertion and methoxysilylene ( S‐7‐c ) is isolated, which establishes a photoequilibrium between the s,trans ( S‐7‐t ) and s,cis form ( S‐7‐c ). If a high concentration of 4 is applied the silylenes exist as complexes S‐17 . The next step needs photochemical activation. Products are dimethoxysilane ( 3 ) and (hydroxy)(methoxy)methylsilane ( 19 ). The picture becomes even more complicated when deuteromethanol ( [D]4 ) is treated with silicon atoms. In this case the primarily formed n‐adduct ( [D]T‐5 ) is stable under matrix conditions. As long as a low concentration is applied, the subsequent step has to be induced by long wavelength irradiation and leads – different from the undeuterated case – to O,CH3 insertion, giving (hydroxy)methylsilylenes ( [D]S‐11‐c ) and ( [D]S‐11‐t ). If a high concentration is used O,D insertion is preferred instead and even without irradiation the first observable products are methanol‐solvated methoxysilylenes ( [D2]S‐17‐c ) and ( [D2]S‐17‐t ). Subsequent irradiation of complexes [D2]S‐17 gives in accordance with the protonated series a mixture of [D2]3 and [D2]19 . Our goal, to find a way to dimethylsilanediol ( [D2]2 ), was finally reached by preparing silylenes [D]S‐11 in a diluted matrix, its specific solvation with [D]4 and final irradiation of complexes [D2]S‐18 . The structural elucidation of all new species is based on the comparison of the experimental observations with density functional theory calculations. Upon cocondensation of silicon atoms with pure methanol at 77 K dimethoxysilane ( 3 ) and 1,1,2‐trimethoxydisilane ( 25 ) are produced. The also present methoxysilanes 22‐24 have to be regarded as secondary products of 3 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号