首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanodot‐textured surface, nanorod‐textured surface and nanocomposite‐textured surface were prepared by the hydrothermal technique and successive ion layer absorption and reaction technique. The adhesion and friction properties of the three kinds of nanotextured surfaces were investigated using an atomic force microscope colloidal probe. Experimental results revealed that the nanorod‐textured surface and nanocomposite‐textured surface can significantly reduce adhesive and friction forces compared with a nanodot‐textured surface. The main reason for this phenomenon was that the nanorod and nanocomposite textures can reduce contact area between the sample surface and the colloidal probe. The effects of surface root mean square roughness, applied load and sliding velocity on the adhesion and friction behaviors of the nanotextured surfaces were investigated. The adhesive and friction forces of the nanotextured surfaces decreased with the increasing surface root mean square roughness. Compared with the nanocomposite‐textured surface, the nanorod‐textured surface has better adhesion and frictional performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Chemical force titrations-plots of the adhesive force between an atomic force microscope tip and sample as a function of pH-were acquired on alkyl monolayer-derivatized Si(111) surfaces. Gold-coated AFM tips modified with thioalkanoic acid self-assembled monolayers (SAM) were employed. Alkyl monolayer-derivatized Si(111) surfaces terminated with methyl, carboxyl, and amine groups were produced via hydrosilylation reactions between 1-alkene reagents and H-terminated silicon. The functionalized surfaces were characterized using standard surface science techniques (AFM, FTIR, and XPS). Titration of the methyl-terminated surface using the modified (carboxyl-terminated) atomic force microscope tip resulted in a small pH-independent hydrophobic interaction. Titration of the amine-terminated surface using the same tip resulted in the determination of a surface pKa of 5.8 for the amine from the pH value from the maximum in the force titration curve. A pK(1/2) of 4.3 was determined for the carboxyl-terminated Si(111) in a similar way. These results will be discussed in relation to the modified Si(111) surface chemistry and organic layer structure, as well as with respect to existing results on Au surfaces modified with SAMs bearing the same functional groups.  相似文献   

3.
A commercial atomic force microscope (AFM) outfitted with a custom control and data acquisition system was used to investigate the adhesive nature of a viscoelastic polydimethylsiloxane (PDMS) network. Due to the complex dependence of the adhesion of this sample on factors such as indentation, surface dwell time, applied stress and sample memory effects, total control of the applied stress profile between the AFM tip and sample was necessary. Since the force curves were analyzed automatically on‐line, large amounts of data could be rapidly collected, alleviating the time‐consuming task of off‐line analysis. The adhesive response is shown to increase with increasing interaction time and the maximum applied load. The results are rationalized by considering the time‐dependent stress relaxation behavior of the PDMS network as it is deformed by the AFM tip.  相似文献   

4.
We have investigated the nanotribological properties of C60 single crystal (111) and (100) surfaces around its orientational order-disorder phase transition temperature, approximately 260 K, by atomic force microscopy and frictional force microscopy (AFM/FFM) in high vacuum. Results show that for both surfaces across the phase transition temperature, the friction force and the adhesive force between a C60 coated AFM tip and the C60 crystal surfaces exhibit discontinuous behavior. The friction force within the applied external load range in the low temperature phase is significantly larger than that in the high temperature phase, with no obvious change in the slope of the friction force curves (the friction coefficient) in the low and high temperature phases. The abrupt change in friction was found to be caused mainly by the abrupt change in adhesion, which, in turn, can be qualitatively understood through changes in the van der Waals interaction and the short-range Coulomb interaction associated with the structural changes across the phase transition. Compared to most other degrees of freedom, the rotation of C60 molecules was found to have little effect on friction and is an ineffective energy dissipation channel.  相似文献   

5.
The mechanics of fibrillar adhesive surfaces of biological systems such as a Lotus leaf and a gecko are widely studied due to their unique surface properties. The Lotus leaf is a model for superhydrophobic surfaces, self-cleaning properties, and low adhesion. Gecko feet have high adhesion due to the high micro/nanofibrillar hierarchical structures. A nanostructured surface may exhibit low adhesion or high adhesion depending upon fibrillar density, and it presents the possibility of realizing eco-friendly surface structures with desirable adhesion. The current research, for the first time uses a patterning technique to fabricate smart adhesion surfaces: single- and two-level hierarchical synthetic adhesive structure surfaces with various fibrillar densities and diameters that allows the observation of either the Lotus or gecko adhesion effects. Contact angles of the fabricated structured samples were measured to characterize their wettability, and contamination experiments were performed to study for self-cleaning ability. A conventional and a glass ball attached to an atomic force microscope (AFM) tip were used to obtain the adhesive forces via force-distance curves to study scale effect. A further increase of the adhesive forces on the samples was achieved by applying an adhesive to the surfaces.  相似文献   

6.
An atomic force microscope (AFM) method for measuring surface elasticity based on the adhesive interactions between an AFM tip and sample surfaces is introduced. The method is particularly useful when there is a large adhesion between the tip and soft samples, when the indentation method would be less accurate. For thin and soft samples, this method will have much less interference from the substrate than is found using the indentation method because there is only passive indentation induced by tip-sample adhesion; in contrast, a large indentation with a sharp tip in the sample may break its stress-strain linearity, or even make it fracture. For the case where it is difficult to accurately locate the tip-sample contact point, which is problematic for the indentation method, the method based on adhesive interactions is helpful because it does not require locating the tip-sample contact point when fitting the whole retraction force curve. The model is tested on PDMS polymers with different degrees of cross-linking.  相似文献   

7.
Friction force measurements performed by means of an atomic force microscope (AFM) under electrochemical conditions on a pure Au(111) electrode surface and one modified with a foreign metal are presented; after deposition of a (sub)monolayer copper on a Au(111) single crystal electrode a large increase of the friction force is observed compared to the pure Au(111) electrode surface; the extent of the increase not only depends on the copper coverage, but also on the normal load and may be explained by a higher energy dissipation due to motion of the sulfate anions adsorbed on the copper atoms induced by the AFM tip.  相似文献   

8.
A key issue of micro/nano devices is how to integrate micro/nanostructures with specified chemical components onto various curved surfaces. Hydrodynamic printing of micro/nanostructures on three‐dimensional curved surfaces is achieved with a strategy that combines template‐induced hydrodynamic printing and self‐assembly of nanoparticles (NPs). Non‐lithography flexible wall‐shaped templates are replicated with microscale features by dicing a trench‐shaped silicon wafer. Arising from the capillary pumped function between the template and curved substrates, NPs in the colloidal suspension self‐assemble into close‐packed micro/nanostructures without a gravity effect. Theoretical analysis with the lattice Boltzmann model reveals the fundamental principles of the hydrodynamic assembly process. Spiral linear structures achieved by two kinds of fluorescent NPs show non‐interfering photoluminescence properties, while the waveguide and photoluminescence are confirmed in 3D curved space. The printed multiconstituent micro/nanostructures with single‐NP resolution may serve as a general platform for optoelectronics beyond flat surfaces.  相似文献   

9.
Fluorescent self‐assembled monolayers (SAMs) are used as dip‐pen nanolithography (DPN) substrates for the fabrication of patterns of Ca2+ and Cu2+ ions. The driving force for the transfer of these ions from an atomic force microscopy (AFM) tip to the surface is their complexation to organic ligands on the monolayer. By means of fluorescent surfaces, the patterns can be visualized under a fluorescence microscope. We use a custom‐built atomic force fluorescence microscope (AFFM), a combination of atomic force and confocal fluorescence microscopes, to deposit the metal ions onto the sensing SAMs by DPN and to subsequently visualize modulations of fluorescence intensity in a sequential write–read mode.  相似文献   

10.
Dynamic simulations of adhesion and friction in chemical force microscopy   总被引:1,自引:0,他引:1  
A hybrid molecular simulation approach has been applied to investigate dynamic adhesion and friction between a chemical force microscope (CFM) tip and a substrate, both modified by self-assembled monolayers (SAMs) with hydrophobic methyl (CH(3)) or hydrophilic hydroxyl (OH) terminal groups. The method combines a dynamic model for the CFM tip-cantilever system and a molecular dynamics (MD) relaxation technique for SAMs on Au(111) at room temperature. The hybrid simulation method allows one to simulate force-distance curves (or adhesion) and friction loops (or friction coefficient) in the CFM on the experimental time scale for the first time. The simulation results also provide valuable molecular information at the interface that is not accessible in CFM experiments, such as the actual tip position with respect to the cantilever support position, molecular and hydrogen-bonding structures at the interface, and load distributions among different molecular chains (or single-molecule forces). Results show that the adhesion force and friction coefficient for the OH/OH contact pair are much larger than those for the CH(3)/CH(3) pair due to the formation of hydrogen bonds. During the retraction of a CFM tip from a surface, the CFM tip is away from the sample surface slightly while the spring undergoes dramatic elongation in the normal direction before rupture occurs. Single-molecule forces are distributed unevenly at the contact area. Surface energies calculated for functionalized surfaces compare well with those determined by experiments.  相似文献   

11.
Scanning force microscopy has been used to characterize the surface structure and properties of poly(ethylene terephthalate) (PET) films. Two types of biaxially oriented film have been studied: one (Melinex O) is free of additives while the other (Mylar D) contains particulate additives at the surface. Contact mode characterization of both materials provide clear images of the polymer surface and (in the case of Mylar D) the additives. Phase images reveal substantial nanoscale morphological detail, including small features thought to be crystallites. To model the adhesive properties of polymer surfaces, mixed self‐assembled monolayers containing polar and methyl terminated adsorbates were studied using chemical force microscopy. It was found that the strength of the tip‐sample adhesion increased with the fraction of polar terminated adsorbates at the surface when a carboxylic acid terminated tip was employed, while the trend was reversed when a methyl terminated tip was used. Adhesion forces measured for plasma treated PET increased with treatment time, and linearly with the cosine of the water contact angle, illustrating the chemical selectivity of chemical force microscopy. However, friction forces were found to vary in a non‐linear fashion, indicating that changes to the polymer surface mechanical properties following treatment were important.  相似文献   

12.
One application of octadecyltrichlorosilane (OTS) self‐assembled monolayers (SAMs) is its use as thin film resists. In this work, we demonstrated that OTS SAMs can be reliable resists for organo‐metallic chemical vapor deposition (OMCVD) grown gold nanoparticles (Au NPs). In optical sensing applications based on Au NPs, one candidate system consists of patterned OTS SAMs and precisely grown OMCVD Au NPs for achieving a high sensitivity. As an initial step, the OTS SAMs need to perfectly resist the OMCVD Au NP growth. Hence the optimized formation of the OTS SAMs affected by different assembly times and baking temperatures was studied by contact angle, ellipsometry, XPS, SEM, and atomic force microscopy (AFM). To demonstrate the ability of the OTS SAMs to resist OMCVD Au NP growth, the OMCVD process was carried out on two sets of samples: OTS SAMs fabricated under optimized conditions on one set and the other set without OTS SAMs. High‐resolution XPS, RBS, SEM, and ultraviolet‐visible (UV‐Vis) spectroscopy were applied to study the growth of Au NPs on the samples with and without OTS SAM resists. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
In this study we measured the adhesion forces between atomic force microscope (AFM) tips or particles attached to AFM cantilevers and different solid samples. Smooth and homogeneous surfaces such as mica, silicon wafers, or highly oriented pyrolytic graphite, and more rough and heterogeneous surfaces such as iron particles or patterns of TiO2 nanoparticles on silicon were used. In the first part, we addressed the well-known issue that AFM adhesion experiments show wide distributions of adhesion forces rather than a single value. Our experiments show that variations in adhesion forces comprise fast (i.e., from one force curve to the next) random fluctuations and slower fluctuations, which occur over tens or hundreds of consecutive measurements. Slow fluctuations are not likely to be the result of variations in external factors such as lateral position, temperature, humidity, and so forth because those were kept constant. Even if two solid bodies are brought into contact under precisely the same conditions (same place, load, direction, etc.) the result of such a measurement will often not be the same as that of the previous contact. The measurement itself will induce structural changes in the contact region, which can change the value for the next adhesion force measurement. In the second part, we studied the influence of humidity on the adhesion of nanocontacts. Humidity was adjusted relatively fast to minimize tip wear during one experiment. For hydrophobic surfaces, no signification change in adhesion force with humidity was observed. Adhesion force versus humidity curves recorded with hydrophilic surfaces either showed a maximum or continuously increased. We demonstrate that the results can be interpreted with simple continuum theory of the meniscus force. The meniscus force is calculated based on a model that includes surface roughness and takes into account different AFM tip (or particle) shapes by a two-sphere model. Experimental and theoretical results show that the precise contact geometry has a critical influence on the humidity dependence of the adhesion force. Changes in tip geometry on the sub-10-nm length scale can completely change adhesion force versus humidity curves. Our model can also explain the differences between earlier AFM studies, where different dependencies of the adhesion force on humidity were observed.  相似文献   

14.
This study focuses on developing dry, surface‐tethered polymeric lubricant coatings capable of significantly decreasing friction and wear of nano‐ and micrometer scale machines. Vinyl‐terminated polydimethylsiloxane chains are spin‐coated with a crosslinking agent and platinum catalyst onto silicon wafers functionalized with a self‐assembling monolayer containing reactive vinyl groups. Lateral force microscopy (LFM) measurements employing a bead probe are used to quantify the coefficient of friction (COF) and adhesion characteristics of the PDMS‐SAM surface tethered networks. The combined polymer network and SAM layer manifest extremely low friction coefficients, μ = 4 × 10?3, which is nearly one order of magnitude lower than the friction coefficient of the bare silicon substrate. The lowest friction forces are measured using silicon substrates covered with nanometer thick, peroxide crosslinked PDMS networks; though poorly crosslinked, these networks display COFs as much as ten‐times lower than a solitary SAM coating layer. Micrometer thick end‐linked optimal networks also manifest attractive interfacial friction properties, with COFs approximately three times larger than the thinner, imperfect networks. These observations are discussed in terms of the structure of the polymer networks and the role of adhesion forces on interfacial friction. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1773–1787, 2008  相似文献   

15.
As a kind of new material, ionic liquids (ILs) are considered a new type of lubricant for micro/nanoelectromechanical system (M/NEMS) due to their excellent thermal and electrical conductivity. However, so far, only a few reports have investigated the friction and wear of thin films of these materials at the micro scale. Evaluating the nanoscale tribological performance of ILs when applied as films of a few nanometers thickness on a substrate is a critical step for their application in M/NEMS devices. To achieve this purpose, IL thin films with four kinds of anions were synthesized and prepared on single‐crystal silicon wafers by the dip‐coating method. Film thickness was determined by the ellipsometric method. Their surface morphologies were observed by means of atomic force microscopy (AFM). The nano and micro tribological properties of the IL films were investigated by a friction force microscope (FFM)with a spherical probe and a UMT‐2MT tribotester, respectively. The corresponding morphologies of the wear tracks of the IL films were examined using a three‐dimensional non‐contact interferometric microscope. The impact of temperature on the adhesion behavior was studied, as well as the effect of sliding frequency and load on the friction coefficient, load bearing capacity and anti‐wear durability. It was found that friction, adhesion and durability of IL films were strongly dependent on their anionic molecular structures, wettability and ambient environment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The silicon surface of commercial atomic force microscopy (AFM) probes loses its hydrophilicity by adsorption of airborne and package-released hydrophobic organic contaminants. Cleaning of the probes by acid piranha solution or discharge plasma removes the contaminants and renders very hydrophilic probe surfaces. Time-of-flight secondary-ion mass spectroscopy and X-ray photoelectron spectroscopy investigations showed that the native silicon oxide films on the AFM probe surfaces are completely covered by organic contaminants for the as-received AFM probes, while the cleaning methods effectively remove much of the hydrocarbons and silicon oils to reveal the underlying oxidized silicon of the probes. Cleaning procedures drastically affect the results of adhesive force measurements in water and air. Thus, cleaning of silicon surfaces of the AFM probe and sample cancelled the adhesive force in deionized water. The significant adhesive force values observed before cleaning can be attributed to formation of a bridge of hydrophobic material at the AFM tip-sample contact in water. On the other hand, cleaning of the AFM tip and sample surfaces results in a significant increase of the adhesive force in air. The presence of water soluble contaminants at the tip-sample contact lowers the capillary pressure in the water bridge formed by capillary condensation at the AFM tip-sample contact, and this consequently lowers the adhesive force.  相似文献   

17.
Adhesion force is one of the most important factors in microelectromechanical systems (MEMS), especially for microassembly. It depends on operating conditions and is affected by the contact area. In this study, the adhesion force between MEMS materials and AFM tips was analysed using AFM's point-mode spectroscopy. The aim was to study the effectiveness of various coatings in MEMS adhesion surfaces. For this purpose, five silicon surfaces were used, four of which were coated, and one was noncoated. Two of them were deposited by single-layer coating (Au and Ag). The other two were deposited by double-layer coating (TiO2/Au, TiO2/Ag) on a Si (1 0 0) substrate. The depositing was accomplished by the thermal evaporation method. Composite materials and analysis were reviewed by observing the SEM image. The experimental results showed that the method of deposition helped to decrease the adhesion force between the probe tip and the surface of the specimens, and double-layer coating had stronger effect on decreasing the adhesion force than the single-layer coating.  相似文献   

18.
Bacterial biofilms were imaged by atomic force microscopy (AFM), and their elasticity and adhesion to the AFM tip were determined from a series of tip extension and retraction cycles. Though the five bacterial strains studied included both Gram-negative and -positive bacteria and both environmental and laboratory strains, all formed simple biofilms on glass surfaces. Cellular spring constants, determined from the extension portion of the force cycle, varied between 0.16+/-0.01 and 0.41+/-0.01 N/m, where larger spring constants were measured for Gram-positive cells than for Gram-negative cells. The nonlinear regime in the extension curve depended upon the biomolecules on the cell surface: the extension curves for the smooth Gram-negative bacterial strains with the longest lipopolysaccharides on their surface had a larger nonlinear region than the rough bacterial strain with shorter lipopolysaccharides on the surface. Adhesive forces between the retracting silicon nitride tip and the cells varied between cell types in terms of the force components, the distance components, and the number of adhesion events. The Gram-negative cells' adhesion to the tip showed the longest distance components, sometimes more than 1 microm, whereas the shortest distance adhesion events were measured between the two Gram-positive cell types and the tip. Fixation of free-swimming planktonic cells by NHS and EDC perturbed both the elasticity and the adhesive properties of the cells. Here we consider the biochemical meaning of the measured physical properties of simple biofilms and implications to the colonization of surfaces in the first stages of biofilm formation.  相似文献   

19.
We use atomic force microscopy (AFM) to determine the frictional properties of nanoscale single-asperity contacts involving octadecyltrichlorosilane (OTS) monolayers and silicon. Quantitative AFM measurements in the wearless regime are performed using both uncoated and OTS-coated silicon AFM tips in contact with both uncoated and OTS-coated silicon surfaces, providing four pairs of either self-mated or unmated interfaces. Striking differences in the frictional responses of the four pairs of interfaces are found. First, lower friction occurs with OTS present on either the tip or substrate, and friction is yet lower when OTS is present on both. Second, the shape of the friction versus load plot strongly depends on whether the substrate is coated with OTS, regardless of whether the tip is coated. Uncoated substrates exhibit the common sublinear dependence, consistent with friction being directly proportional to the area of contact. However, coated substrates exhibit an unusual superlinear dependence. These results can be explained qualitatively by invoking molecular plowing as a significant contribution to the frictional behavior of OTS. Direct in situ comparison of two intrinsic OTS structural phases on the substrate is also performed. We observe frictional contrast for different local molecular packing densities of the otherwise identical molecules. The phase with lower packing density exhibits higher friction, in agreement with related previous work, but decisively observed here in single, continuous images involving the same molecules. Lateral stiffness measurements show no distinction between the two OTS structural phases, demonstrating that the difference in friction is not due to divergent stiffnesses of the two phases. Therefore, the packing density directly affects the interface's intrinsic resistance to friction, that is, the interfacial shear strength.  相似文献   

20.
The atomic force microscope has been used to investigate normal surface forces and lateral friction forces at different concentrations of sodium oleate, a frequently used fatty acid in the deinking process. The measurements have been performed using the colloidal probe technique with bead materials consisting of cellulose and silica. Cellulose was used together with a printing ink alkyd resin and mica, whereas silica was used with a hydrophobized silica wafer. The cellulose-alkyd resin system showed stronger double layer repulsion and the friction was reduced with increasing surfactant concentration. The adhesive interaction disappeared immediately on addition of sodium oleate. The normal surface forces for cellulose-mica indicated no apparent adsorption of the sodium oleate however, the friction coefficient increased on addition of sodium oleate, which we ascribe to some limited adsorption increasing the effective surface roughness. The silica-hydrophobic silica system showed a completely different surface force behavior at the different concentrations. An attractive hydrophobic interaction was evident since the surfaces jumped into adhesive contact at a longer distance than the van der Waals forces would predict. The strong adhesion was reflected in the friction forces as a nonlinear relationship between load and friction and a large friction response at zero applied load. Indirect evidence of adsorption to the hydrophilic silica surface was also observed in this case, and QCM studies were performed to confirm the adsorption of material to both surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号