首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Beckmann rearrangement of acetone oxime promoted by proton transfers in the supercritical water has been investigated by means of the hybrid quantum mechanical/molecular mechanical approach combined with the theory of energy representation (QM/MM-ER) recently developed. The transition state (TS) structures have been explored by ab initio calculations for the reaction of hydrated acetone oxime on the assumption that the reaction is catalyzed by proton transfers along the hydrogen bonds connecting the solute and the solvent water molecules. Up to two water molecules have been considered as reactants that take part in the proton transfers. As a result of the density functional theory calculations with B3LYP functional and aug-cc-pVDZ basis set, it has been found that participation of two water molecules in the reaction reduces the activation free energy by -12.3 kcal/mol. Furthermore, the QM/MM-ER simulations have revealed that the TS is more stabilized than the reactant state in the supercritical water by 2.7 kcal/mol when two water molecules are involved in the reaction. Solvation free energies of the reactant and the TS have been decomposed into terms due to the electronic polarization of the solute, electron density fluctuation, and others to elucidate the origin of the stabilization of the TS as compared with the reactant. It has been revealed that the promotion of the chemical reaction due to the hydration mainly originates from the interaction between the nonpolarized solute and the solvent water molecules at the supercritical state.  相似文献   

2.
Combined QM/MM molecular dynamics simulations have been carried out for the dehalogenation reaction of the nucleophilic displacement of dichloroethane catalyzed by haloalkane dehalogenase. The computed chlorine kinetic isotope effects and free energies of activation in the wild-type and the Phe172Trp mutant enzyme are found to be consistent with experiment. In comparison with the uncatalyzed model reaction in water, the enzyme lowers the activation barrier by about 16 kcal/mol. The enormous enzymatic action was attributed to a combination of contributions from a change in the solvation effect and transition state stabilization. The unique features of tryptophan's ability to interact favorably with hydrophobic substrates and to form hydrogen bonds to the leaving group chloride ion at the transition state enable both factors to make significant contributions to the barrier lowering mechanism in the enzyme. This is in contrast to the reference reaction in water, in which hydrogen bonding interactions are weakened at the transition state because of dispersed charge distribution at the transition state relative to that in the reactant and product states.  相似文献   

3.
Chorismate mutase is at the centre of current controversy about fundamental features of biological catalysts. Some recent studies have proposed that catalysis in this enzyme does not involve transition state (TS) stabilization but instead is due largely to the formation of a reactive conformation of the substrate. To understand the origins of catalysis, it is necessary to compare equivalent reactions in different environments. The pericyclic conversion of chorismate to prephenate catalysed by chorismate mutase also occurs (much more slowly) in aqueous solution. In this study we analyse the origins of catalysis by comparison of multiple quantum mechanics/molecular mechanics (QM/MM) reaction pathways at a reliable, well tested level of theory (B3LYP/6-31G(d)/CHARMM27) for the reaction (i) in Bacillus subtilis chorismate mutase (BsCM) and (ii) in aqueous solvent. The average calculated reaction (potential energy) barriers are 11.3 kcal mol(-1) in the enzyme and 17.4 kcal mol(-1) in water, both of which are in good agreement with experiment. Comparison of the two sets of reaction pathways shows that the reaction follows a slightly different reaction pathway in the enzyme than in it does in solution, because of a destabilization, or strain, of the substrate in the enzyme. The substrate strain energy within the enzyme remains constant throughout the reaction. There is no unique reactive conformation of the substrate common to both environments, and the transition state structures are also different in the enzyme and in water. Analysis of the barrier heights in each environment shows a clear correlation between TS stabilization and the barrier height. The average differential TS stabilization is 7.3 kcal mol(-1) in the enzyme. This is significantly higher than the small amount of TS stabilization in water (on average only 1.0 kcal mol(-1) relative to the substrate). The TS is stabilized mainly by electrostatic interactions with active site residues in the enzyme, with Arg90, Arg7 and Glu78 generally the most important. Conformational effects (e.g. strain of the substrate in the enzyme) do not contribute significantly to the lower barrier observed in the enzyme. The results show that catalysis is mainly due to better TS stabilization by the enzyme.  相似文献   

4.
High level ab initio calculations using complete active space self-consistent field and multi reference single and double excitation configuration interaction methods with cc-pVDZ (correlation consistent polarized valence double zeta) and cc-pVTZ (triple zeta) basis sets have been performed to elucidate the reaction mechanism of the ion-molecule reaction, C2H2(1Sigmag+) + O+(4S), for which collision experiment has been performed by Chiu et al. [J. Chem. Phys. 109, 5300 (1998)]. The minor low-energy process leading to the weak spin-forbidden product C2H2+ (2Piu) + O(1D) has been studied previously and will not be discussed here. The major pathways to form charge-transfer (CT) products, C2H2+ (2Piu) + O(3P) (CT1) and C2H2+ (4A2) + O(3P) (CT2), and the covalently bound intermediates are investigated. The approach of the oxygen atom cation to acetylene goes over an energy barrier TS1 of 29 kcal/mol (relative to the reactant) and adiabatically leads the CT2 product or a weakly bound intermediate Int1 between CT2 products. This transition state TS1 is caused by the avoided crossing between the reactant and CT2 electronic states. As the C-O distance becomes shorter beyond the above intermediate, the C1 reaction pathway is energetically more favorable than the Cs pathway and goes over the second transition state TS2 of a relative energy of 39 kcal/mol. Although this TS connects diabatically to the covalent intermediate Int2, there are many states that interact adiabatically with this diabatic state and these lead to the other charge-transfer product CT1 via either of several nonadiabatic transitions. These findings are consistent with the experiment, in which charge transfer and chemical reaction products are detected above 35 and 39 kcal/mol collision energies, respectively.  相似文献   

5.
To investigate fundamental features of enzyme catalysis, there is a need for high-level calculations capable of modelling crucial, unstable species such as transition states as they are formed within enzymes. We have modelled an important model enzyme reaction, the Claisen rearrangement of chorismate to prephenate in chorismate mutase, by combined ab initio quantum mechanics/molecular mechanics (QM/MM) methods. The best estimates of the potential energy barrier in the enzyme are 7.4-11.0 kcal mol(-1)(MP2/6-31+G(d)//6-31G(d)/CHARMM22) and 12.7-16.1 kcal mol(-1)(B3LYP/6-311+G(2d,p)//6-31G(d)/CHARMM22), comparable to the experimental estimate of Delta H(++)= 12.7 +/- 0.4 kcal mol(-1). The results provide unequivocal evidence of transition state (TS) stabilization by the enzyme, with contributions from residues Arg90, Arg7, and Arg63. Glu78 stabilizes the prephenate product (relative to substrate), and can also stabilize the TS. Examination of the same pathway in solution (with a variety of continuum models), at the same ab initio levels, allows comparison of the catalyzed and uncatalyzed reactions. Calculated barriers in solution are 28.0 kcal mol(-1)(MP2/6-31+G(d)/PCM) and 24.6 kcal mol(-1)(B3LYP/6-311+G(2d,p)/PCM), comparable to the experimental finding of Delta G(++)= 25.4 kcal mol(-1) and consistent with the experimentally-deduced 10(6)-fold rate acceleration by the enzyme. The substrate is found to be significantly distorted in the enzyme, adopting a structure closer to the transition state, although the degree of compression is less than predicted by lower-level calculations. This apparent substrate strain, or compression, is potentially also catalytically relevant. Solution calculations, however, suggest that the catalytic contribution of this compression may be relatively small. Consideration of the same reaction pathway in solution and in the enzyme, involving reaction from a 'near-attack conformer' of the substrate, indicates that adoption of this conformation is not in itself a major contribution to catalysis. Transition state stabilization (by electrostatic interactions, including hydrogen bonds) is found to be central to catalysis by the enzyme. Several hydrogen bonds are observed to shorten at the TS. The active site is clearly complementary to the transition state for the reaction, stabilizing it more than the substrate, so reducing the barrier to reaction.  相似文献   

6.
The reaction mechanism of the α, α and α, β elimination of hydrogen fluorides from alkyl fluorides has been studied theoretically. For fluoroethane as a reactant, the transition state (TS) optimized at the level of the 6-31G** basis set shows that the α, β elimination proceeds via a four membered-ring TS with a barrier height 64.6 kcal/mol, while the α, α elimination, via a three-membered ring TS with a 83.7 kcal/mol barrier. Four substituents, CH3, CN, F, and NH2, were used to investigate the substituent effect of elimination by using the 3-21G basis set. The calculated barriers show that NH2-substituted alkyl fluorides favor both the α, α and α, β elimination and these two reactions would be expected to proceed simultaneously. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Quantum mechanical calculations using restricted and unrestricted B3LYP density functional theory, CASPT2, and CBS-QB3 methods for the dimerization of 1,3-cyclohexadiene (1) reveal several highly competitive concerted and stepwise reaction pathways leading to [4 + 2] and [2 + 2] cycloadducts, as well as a novel [6 + 4] ene product. The transition state for endo-[4 + 2] cycloaddition (endo-2TS, DeltaH(double dagger)(B3LYP(0K)) = 28.7 kcal/mol and DeltaH(double dagger)(CBS-QB3(0K)) = 19.0 kcal/mol) is not bis-pericyclic, leading to nondegenerate primary and secondary orbital interactions. However, the C(s) symmetric second-order saddle point on the B3LYP energy surface is only 0.3 kcal/mol above endo-2TS. The activation enthalpy for the concerted exo-[4 + 2] cycloaddition (exo-2TS, DeltaH(double dagger)(B3LYP(0K)) = 30.1 kcal/mol and DeltaH(double dagger)(CBS-QB3(0K)) = 21.1 kcal/mol) is 1.4 kcal/mol higher than that of the endo transition state. Stepwise pathways involving diallyl radicals are formed via two different C-C forming transition states (rac-5TS and meso-5TS) and are predicted to be competitive with the concerted cycloaddition. Transition states were located for cyclization from intermediate rac-5 leading to the endo-[4 + 2] (endo-2) and exo-[2 + 2] (anti-3) cycloadducts. Only the endo-[2 + 2] (syn-3) transition state was located for cyclization of intermediate meso-5. The novel [6 + 4] "concerted" ene transition state (threo-4TS, DeltaH(double dagger)(UB3LYP(0K)) = 28.3 kcal/mol) is found to be unstable with respect to an unrestricted calculation. This diradicaloid transition state closely resembles the cyclohexadiallyl radical rather than the linked cyclohexadienyl radical. Several [3,3] sigmatropic rearrangement transition states were also located and have activation enthalpies between 27 and 31 kcal/mol.  相似文献   

8.
The mechanism of the cycloaddition reaction between singlet dichloro‐germylene carbene and aldehyde has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by zero‐point energy and CCSD (T)//MP2/6‐31G* method. From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The channel (A) consists of four steps: (1) the two reactants (R1, R2) first form an intermediate INT2 through a barrier‐free exothermic reaction of 142.4 kJ/mol; (2) INT2 then isomerizes to a four‐membered ring compound P2 via a transition state TS2 with energy barrier of 8.4 kJ/mol; (3) P2 further reacts with aldehyde (R2) to form an intermediate INT3, which is also a barrier‐free exothermic reaction of 9.2 kJ/mol; (4) INT3 isomerizes to a germanic bis‐heterocyclic product P3 via a transition state TS3 with energy barrier of 4.5 kJ/mol. The process of channel (B) is as follows: (1) the two reactants (R1, R2) first form an intermediate INT4 through a barrier‐free exothermic reaction of 251.5 kJ/mol; (2) INT4 further reacts with aldehyde (R2) to form an intermediate INT5, which is also a barrier‐free exothermic reaction of 173.5 kJ/mol; (3) INT5 then isomerizes to a germanic bis‐heterocyclic product P5 via a transition state TS5 with an energy barrier of 69.4 kJ/mol. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

9.
10.
In the present work, an ab initio study on hydration (a metal-ligand replacement by water molecule or OH- group) of cis- and transplatin and their palladium analogs was performed within a neutral pseudomolecule approach (e.g., metal-complex+water as reactant complex). Subsequent replacement of the second ligand was considered. Optimizations were performed at the MP2/6-31+G(d) level with single-point energy evaluation using the CCSD(T)/6-31++G(d,p) approach. For the obtained structures of reactants, transition states (TS's), and products, both thermodynamic (reaction energies and Gibbs energies) and kinetic (rate constants) characteristics were estimated. It was found that all the hydration processes are mildly endothermic reactions-in the first step they require 8.7 and 10.2 kcal/mol for ammonium and chloride replacement in cisplatin and 13.8 and 17.8 kcal/mol in the transplatin case, respectively. Corresponding energies for cispalladium amount to 5.2 and 9.8 kcal/mol, and 11.0 and 17.7 kcal/mol for transpalladium. Based on vibrational analyses at MP2/6-31+G(d) level, transition state theory rate constants were computed for all the hydration reactions. A qualitative agreement between the predicted and known experimental data was achieved. It was also found that the close similarities in reaction thermodynamics of both Pd(II) and Pt(II) complexes (average difference for all the hydration reactions are approximately 1.8 kcal/mol) do not correspond to the TS characteristics. The TS energies for examined Pd(II) complexes are about 9.7 kcal/mol lower in comparison with the Pt analogs. This leads to 10(6) times faster reaction course in the Pd cases. This is by 1 or 2 orders of magnitude more than the results based on experimental measurements.  相似文献   

11.
We present results of a theoretical analysis of the phosphorylation reaction in cAMP-dependent protein kinase using a combined quantum mechanical and molecular mechanics (QM/MM) approach. Detailed analysis of the reaction pathway is provided using a novel QM/MM implementation of the nudged elastic band method, finite temperature fluctuations of the protein environment are taken into account using free energy calculations, and an analysis of hydrogen bond interactions is performed on the basis of calculated frequency shifts. The late transfer of the substrate proton to the conserved aspartate (D166), the activation free energy of 15 kcal/mol, and the slight exothermic (-3 kcal/mol) character of the reaction are all consistent with the experimental data. The near attack conformation of D166 in the reactant state is maintained by interactions with threonine-201, asparagine-177, and most notably by a conserved water molecule serving as a strong structural link between the primary metal ion and the D166. The secondary Mg ion acts as a Lewis acid, attacking the beta-gamma bridging oxygen of ATP. This interaction, along with a strong hydrogen bond between the D166 and the substrate, contributes to the stabilization of the transition state. Lys-168 maintains a hydrogen bond to a transferring phosphoryl group throughout a reaction process. This interaction increases in the product state and contributes to its stabilization.  相似文献   

12.
Ab initio (MP2, CCSD(T)) and density functional theory (BLYP, B3LYP) calculations provide insight concerning novel aspects of structure and bonding in cyclobutylidene (1). Singlet cyclobutylidene ((1)1) adopts a bicyclobutane-like structure (C(s) symmetry) that includes a weak, transannular bonding interaction between the carbene carbon and the opposing CH(2) group. Conformational ring inversion in (1)1 occurs through a transition state of C(2)(v)() symmetry (TS(1)1) with an enthalpy barrier of approximately 3 kcal/mol. Stabilization afforded the singlet state by the transannular interaction appears to be largely offset by a loss of hyperconjugative stabilization from the adjacent C-H bonds. Triplet cyclobutylidene ((3)1) exhibits a C(2)(v)() structure and conventional bonding. The triplet state lies 5.9 kcal/mol above the singlet ground state at the CCSD(T)/TZP//CCSD(T)/DZP level of theory. The singlet-triplet energy gap of cyclobutylidene (-5.9 kcal/mol) lies between that of an acyclic analogue, dimethylcarbene (-1.6 kcal/mol), and a highly strained analogue, cyclopropylidene (-13.8 kcal/mol). The magnitude of the energy gap suggests that triplet cyclobutylidene ((3)1) will be thermally accessible under a variety of experimental conditions.  相似文献   

13.
Orotidine 5'-monophosphate decarboxylase (OMPDC) catalyzes the exchange for deuterium from solvent D(2)O of the C-6 proton of 1-(β-d-erythrofuranosyl)-5-fluorouracil (FEU), a phosphodianion truncated product analog. The deuterium exchange reaction of FEU is accelerated 1.8 × 10(4)-fold by 1 M phosphite dianion (HPO(3)(2-)). This corresponds to a 5.8 kcal/mol stabilization of the vinyl carbanion-like transition state, which is similar to the 7.8 kcal/mol stabilization of the transition state for OMPDC-catalyzed decarboxylation of a truncated substrate analog by bound HPO(3)(2-). These results show that the intrinsic binding energy of phosphite dianion is used in the stabilization of the vinyl carbanion-like transition state common to the decarboxylation and deuterium exchange reactions.  相似文献   

14.
Xiuhui Lu  Xin Che  Leyi Shi  Junfeng Han 《中国化学》2010,28(10):1803-1809
The mechanism of the cycloaddition reaction of forming germanic hetero‐polycyclic compound between singlet germylene carbene and formaldehyde has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD (T)//MP2/6‐31G* method. From the potential energy profile, we predict that the cycloaddition reaction of forming germanic hetero‐polycyclic compound between singlet germylene carbene and formaldehyde has two competitive dominant reaction pathways. First dominant reaction pathway consists of four steps: (1) the two reactants (R1, R2) first form an intermediate (INT1) through a barrier‐free exothermic reaction of 117.5 kJ/mol; (2) intermediate (INT1) then isomerizes to a four‐membered ring compound (P2) via a transition state (TS2) with an energy barrier of 25.4 kJ/mol; (3) four‐membered ring compound (P2) further reacts with formaldehyde (R2) to form an intermediate (INT3), which is also a barrier‐free exothermic reaction of 19.6 kJ/mol; (4) intermediate (INT3) isomerizes to a germanic bis‐heterocyclic product (P3) via a transition state (TS3) with an energy barrier of 5.8 kJ/mol. Second dominant reaction pathway is as follows: (1) the two reactants (R1, R2) first form an intermediate (INT4) through a barrier‐free exothermic reaction of 197.3 kJ/mol; (2) intermediate (INT4) further reacts with formaldehyde (R2) to form an intermediate (INT5), which is also a barrier‐free exothermic reaction of 141.3 kJ/mol; (3) intermediate (INT5) then isomerizes to a germanic bis‐heterocyclic product (P5) via a transition state (TS5) with an energy barrier of 36.7 kJ/mol.  相似文献   

15.
The mechanism of the cycloaddition reaction of forming a silapolycyclic compound between singlet methylenesilylene and acetone has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD(T)//MP2/6‐31G* method. From the potential energy profile, we predict that the cycloaddition reaction of forming a silapolycyclic compound between singlet methylenesilylene and acetone has two competitive dominant reaction pathways. First dominant reaction pathway consists of four steps: (I) the two reactants (R1, R2) first form an intermediate (INT1) through a barrier‐free exothermic reaction of 46.2 kJ/mol; (II) intermediate (INT1) then isomerizes to a planar four‐membered ring product (P3) via transition state (TS3) with an energy barrier of 47.1 kJ/mol; (III) planar four‐membered ring product (P3) further reacts with acetone (R2) to form an intermediate (INT4), which is also a barrier‐free exothermic reaction of 40.0 kJ/mol; (IV) intermediate (INT4) isomerizes to a silapolycyclic compound (P4) via transition state (TS4) with an energy barrier of 57.0 kJ/mol. Second dominant reaction pathway consists of three steps: (I) the two reactants (R1, R2) first form a four‐membered ring intermediate (INT2) through a barrier‐free exothermic reaction of 0.5 kJ/mol; (II) INT2 further reacts with acetone (R2) to form an intermediate (INT5), which is also a barrier‐free exothermic reaction of 45.4 kJ/mol; (III) intermediate (INT5) isomerizes to a silapolycyclic compound (P5) via transition state (TS5) with an energy barrier of 49.3 kJ/mol. P4 and P5 are isomeric compounds. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

16.
卢秀慧  徐曰华  于海彬  林璜 《中国化学》2005,24(10):1339-1342
The mechanism of a cycloaddition reaction between singlet dichloromethylene germylene and ethylene has been investigated with B3LYP/6-31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. Energies for the involved conformations were calculated by CCSD(T)//B3LYP/6-31G* method. On the basis of the surface energy profile obtained with CCSD(T)// B3LYP/6-31G* method for the cycloaddition reaction between singlet dichloromethylene germylene and ethylene, it can be predicted that the dominant reaction pathway is that an intermediate INT1 is firstly formed between the two reactants through a barrier-free exothermic reaction of 61.7 kJ/mol, and the intermediate INT1 then isomerizes to an active four-membered ring product P2.1 via a transition state TS2, an intermediate INT2 and a transition state TS2.1, in which energy barriers are 57.7 and 42.2 kJ/mol, respectively.  相似文献   

17.
Chorismate mutase is a key model system in the development of theories of enzyme catalysis. To analyze the physical nature of catalytic interactions within the enzyme active site and to estimate the stabilization of the transition state (TS) relative to the substrate (differential transition state stabilization, DTSS), we have carried out nonempirical variation-perturbation analysis of the electrostatic, exchange, delocalization, and correlation interactions of the enzyme-bound substrate and transition-state structures derived from ab initio QM/MM modeling of Bacillus subtilis chorismate mutase. Significant TS stabilization by approximately -23 kcal/mol [MP2/6-31G(d)] relative to the bound substrate is in agreement with that of previous QM/MM modeling and contrasts with suggestions that catalysis by this enzyme arises purely from conformational selection effects. The most important contributions to DTSS come from the residues, Arg90, Arg7, Glu78, a crystallographic water molecule, Arg116, and Arg63, and are dominated by electrostatic effects. Analysis of the differential electrostatic potential of the TS and substrate allows calculation of the catalytic field, predicting the optimal location of charged groups to achieve maximal DTSS. Comparison with the active site of the enzyme from those of several species shows that the positions of charged active site residues correspond closely to the optimal catalytic field, showing that the enzyme has evolved specifically to stabilize the TS relative to the substrate.  相似文献   

18.
The inversion of four 1,4-benzodiazepines was investigated with the ab initio "replica path method" with density functional theory at the B3LYP/6-31G* level. The reaction path constructed with this method for the inversion provides an approximate transition state (TS) geometry, which, upon further TS optimization, leads to the TS geometry characterized by a single vibrational frequency. 1,4-Benzodiazepines lacking a 5-phenyl ring have a single reaction path for the inversion with Cs symmetry at the TS. In contrast, the inversion of benzodiazepines with a 5-phenyl ring, such as the peripheral benzodiazepine receptor ligand 4'-chlorodiazepam (Ro5-4864) and its N1-desmethyl analog (Ro5-2752), can proceed through multiple reaction paths having a TS with or without Cs symmetry. Notably, the replica path method found a path connecting two asymmetric TSs of 4'-chlorodiazepam via a symmetrical TS, suggesting that these inversion paths can be readily crossed from one to another. The stabilization energies gained by 4'-chlorodiazepam and its N1-desmethyl analog from the breaking of Cs symmetry at the TS were calculated to be 0.10 and 0.07 kcal/mol, respectively. The origin of the broken symmetry of Cs was traced to the coupling of the puckering of the diazepine ring with the rotation of the chlorophenyl ring. These results show the advantages of the replica path method for locating the TSs as well as for constructing the reaction paths for the inversion of 1,4-benzodiazepines.  相似文献   

19.
The first and second substitution reactions binding of the anticancer drug trans‐[Pt((CH3)2C?NOH)((CH3)2CHNH2)Cl2] to purine bases were studied computationally using a combination of density functional theory and isoelectric focusing polarized continuum model approach. Our calculations demonstrate that the trans monoaqua and diaqua reactant complexes (RCs) can generate either trans‐ or cis‐monoadducts via identical or very similar trans trigonal‐bipyramidal transition‐state structures. Furthermore, these monoadducts can subsequently close by coordination to the adjacent purine bases to form 1,2‐intrastrand Pt‐DNA adducts and eventually distort DNA in the same way as cisplatin. Thus, it is likely that the transplatin analogues have the same mechanism of anticancer activity as cisplatin. For the first substitutions, the activation free energies of monoaqua complexes are always lower than that of diaqua complexes. The lowest activation energy for monoaqua substitutions is 16.2 kcal/mol for guanine and 16.5 kcal/mol for adenine, whereas the lowest activation energy for diaqua substitutions is 17.1 kcal/mol for guanine and 25.9 kcal/mol for adenine. For the second substitutions, the lowest activation energy from trans‐monoadduct to trans‐diadduct is 19.1 kcal/mol for GG adduct and 20.7 kcal/mol for GA adduct, whereas the lowest activation energy from cis‐monoadduct to cis‐diadduct is 18.9 kcal/mol for GG adduct and 18.5 kcal/mol for GA adduct. In addition, the first and second substitutions prefer guanine over adenine, which is explained by the remarkable larger complexation energy for the initial RC in combination with lower activation energy for the guanine substitution. Overall, the hydrogen‐bonds play an important role in stabilizing these species of the first and second substitutions. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

20.
The reactions of hydrazoic acid (HN3) with ethene, acetylene, formaldimine (H2CNH), and HCN were explored with the high‐accuracy CBS‐QB3 method, as well as with the B3LYP and mPW1K density functionals. CBS‐QB3 predicts that the activation energies for the reactions of hydrazoic acid with ethylene, acetylene, formaldimine, and HCN have remarkably similar activation enthalpies of 19.0, 19.0, 21.6, and 25.2 kcal/mol, respectively. The reactions are calculated to have reaction enthalpies of −21.5 for triazoline formation from ethene, and −63.7 kcal/mol for formation of the aromatic triazole from acetylene. The reaction to form tetrazoline from formaldimine has a reaction enthalpy of −8 kcal/mol (ΔGrxn=+5.6 kcal/mol), and the formation of tetrazole from HCN has a reaction enthalpy of −23.0 kcal/mol. The trends in the energetics of these processes are rationalized by differences in σ‐bond energies in the transition states and adducts, and the energy required to distort hydrazoic acid to its transition‐state geometry. The density functionals predict activation enthalpies that are in relatively good agreement with CBS‐QB3, the results differing from CBS‐QB3 results by ca. 1–2 kcal/mol. Significant errors are revealed for mPW1K in predicting the reaction enthalpies for all reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号