首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
(1,5-Cyclooctadiene) (4-substituted pyridinium 2-pyridylcarbonylmethylide)- rhodium(I) perchlorates, [Rh(COD)(C5H4NC(O)C?H+C5H4X-4)]ClO4 [COD = 1,5-cyclooctadiene; X = CH3C(O), CH3OC(O), C6H5, CH3, and H], have been prepared. They are shown to have the geometry with coordination by the pyridyl nitrogen and carbonyl oxygen atoms of the ylide ligands and to exhibit intramolecular rearrangement of coordinated COD in chloroform, methanol, and dimethyl sulphoxide based on IR and 1H NMR spectroscopies. Although the ylides have exhibited fluorescence bands due to an intramolecular charge-transfer transition and phosphorescence bands due to a carbonyl 3(n*) transition, the complexes have given emission bands due to the metal-to-ylide ligand charge-transfer transition. A.single crystal X-ray crystal structure has been determined for [Rh(COD)(C5H4NC(O)C?H+C5H4CH3-4)]ClO4. The crystals are monoclinic, space group P21/n with cell dimensions a = 14.887(3), b = 20.274(4), c = 6.966(1) Å, β = 96.13(1)°, and Z = 4. The structure has been refined by a block-diagonal least-squares method to final R = 0.060 for 2997 independent reflections with |Fo| > 3σ(F). The ylide carbon-pyridinium nitrogen bond distance is 1.420(10) Å. The bonded distances from rhodium to the midpoints of the double bonds of COD are 1.982(11) and 2.014(12) Å.  相似文献   

2.
Acetatobis(triphenylphosphine)dicarbonylrhenium (I), (PPh3)2(CO)2Re(O2CCH3), has been prepared in a novel way by treating (PPh3)2(CO)2Re(NHCOR) (R = C6H5, p-MeC6H4) with triethylamine and water in the presence of air. Oxidation of the ethyl group of the tertiary amine is presumably involved in the formation of the acetate ligand. Three-dimensional single-crystal X-ray diffraction analysis shows that the complex is octahedral with the phosphines in trans positions and the acetate ion acting as a chelating ligand. The complex crystallizes in theP21/c space group with cell dimensions a = 17.63(2), b = 9.72(1), c = 20.95(2)Å, β = 104°38'(6'), Z = 4. The mean values of bond lengths observed are Re-P 2.415, Re-O 2.21 and Re-(CO) 1.85Å. The same acetate derivative and a series of car?ylato complexes (PPh3)2(CO)2Re(O2CR') have been obtained from reactions of Re(CO)2(PPh3)3H with car?ylic acids R'COOH (R' = H, CH3, CH2Cl, CH2CH3, C6H5). When trifluoroacetic acid is used, a product of formula (PPh3)2(CO)3Re(OC(O)CF3) is isolated. The action of neutral ligands L on some of these products gave rise to derivatives of formula (PPh3)2(CO)2(L)Re(OC(O)R') (L = CO, R' = H, CH3, C6H5; L = pMeC6H4NC, R' = CH3), having monodentate car?ylato moieties.  相似文献   

3.
Thirty triorganotin(IV) derivatives of the type R3Sn(R′COCHCOCH2COR″) and [R3Sn]2 (R′COCHCOCHCOR″) (where R = CH3, C2H5, nC3H7, nC4H9 and C6H5 and R′ = R″ = CH3, C6H5 or R′ = C6H5, R″ = CH3) have been synthesised by the interaction of R3SnCl with mono- or disodium salt of 2, 4, 6-heptanetrione, 1-phenyl-1, 3, 5-hexanetrione and 1, 5-diphenyl-1, 3, 5-pentanetrione in 1:1 and 2:1 molar ratios, respectively. The complexes have been examined by their molecular weight, IR, PMR and elemental analyses and their tentative structures assigned. Both “Z” and “E” forms have been identified in the 1:1 complexes in equilibrium with the enol form containing five coordinate tin. The 2:1 derivatives contain one five- and other four coordinated tin(IV) except the phenyl analogue where both the tins are five coordinated.  相似文献   

4.
The preparation of ylides of the general structure is described. Thermolysis of 14a (R = CH3, R' = H, Ar = C6H5) gave dimethylamine and 2,4-dimethyl-6-phenyl-s-triazine. Thermolysis of ylides 14b (R = C6H5; R' = CH3, Ar = C6H5) and 14c (R = C6H5, R' = CH3, Ar = p-tolyl) gave dimethylamine, ArCH = NCH3 and 1-methyl-2-Ar-4,6-diphenyl-1,2-dihydro-s-triazines ( 19a,b ). Triazines 19a and 19b were also prepared by condensation of N-methylbenzamidine with benzaldehyde and p-tolualdehyde, respectively. Thermolysis of 14d (R = C6H5, R1 = CH2C6H5,Ar = C6H5) gave 1-benzyl-2,4,6-triphenyl-1,2-dihydro-s-triazine ( 19c ) and N-benzylidenebenzylamine. Mechanistic aspects of these reactions are discussed.  相似文献   

5.
6.
DTA and TGA (in air and in nitrogen) are presented for the poly(tertiary phosphine oxides), C6H5[(C6H5)P(O)CH2CH2]nP(O)(C6H5)2, where n = 1, 2, or 3.  相似文献   

7.
Carbamoyl and alkoxycarbonyl complexes of palladium(II) and platinum(II) of the type M(pnp)(CONHR)Cl (pnp = 2,6-bis(diphenylphosphinomethyl)pyridine; M Pd, R  C6H5, p-CH3C6H4, p-CH3OC6H4, C6H11, t-Bu; M  Pt, R  C6H5), Pd(pnp)[CON(Pr)2]Cl (Pr = propyl), M(pnp)(COOR)Cl (M  Pd, R  C6H5, CH3; M  Pt, R  CH3), Pd(pnp)(COOCH3)2 result from reaction of M(pnp)Cl2 with carbon monoxide and amines or alkoxides at room temperature and atmospheric pressure.The carbamoyl complexes react with bases to give urethane or diphenylurea depending upon the experimental conditions.  相似文献   

8.
Bis-(trimethylsilyl)acetamide (BSA) reacts with borazines [RNBX]3, R=H,X=F; R=CH3,X=F; R=C6H5,X=F and R=C6H5,X=Cl to the corresponding borazines,X=OSi(CH3)3. The1H-NMR signal of the Si(CH)3-groups of [C6H5NBOSi(CH3)3]3 is at abnormally high field. With [CH3NBCl]3,BSA forms borazines which contain both Si(CH3)3O- and O?C(CH3)=NSiR3 groups bonded to the boron atoms. With LiN[Si(CH3)3]2, [CH3NBCl]3 forms silylaminoboranes.1H-NMR, mass spectrometric and analytical data are reported.  相似文献   

9.
The novel complexes CpFe(CO)(COR)P(C6H5)2NR'R* with Cp = C5H5,C9H7 (indenyl); R = CH3, C2H5, CH(CH3)2, CH2C6H5;R` = H, CH3, C2H5, CH2C6H5 and R* = (S)-CH(CH3)(C6H5), have been synthesized by reaction of CpFe(CO)2R wiht P(C6H5)2NR`R* and characterized analytically as well as spectroscopically. The pairs of diastereoisomers RS/SS have been separated by preparative liquid chromatography and fractional crystallization, respectively. The optically pure complexes (+)436- und ()436-CpFe(CO)(COR)P(C6H5)2NR`R* are configurationally stable at room temperature. At higher temperatures they equilibrate with CpFe(CO)2R and epimerize with respect to the Fe configuration.  相似文献   

10.
The synthesis and properties of the compounds Cp2TiR, with R = C6H5, o-, m-, p-CH3C6H4, 2,6-(CH3)2C6H3, 2,4,6-(CH3)3C6H2, C6F5, CH2C6H5, are described. Chemical and physical properties indicate that the R groups are σ-bonded to the titanium atom. The complexes are monomeric, with one unpaired electron per titanium atom. They are very air sensitive, and vary markedly in thermal stability; some of the compounds react with molecular nitrogen, to give complexes of the general formula (Cp2TiR)2N2. Compounds CP2TiR with R = alkyl could not be isolated.  相似文献   

11.
Direct Synthesis of Orthometallated Ketones of the Type RCO(o-C6H4)Mn(CO)4?nLn (R = Alkyl and Aryl Groups, n = 0, 1, 2, L = Ligand) The starting materials of the type RMn(CO)5?nLn und (C6H5)2 Hg react to the products of the type RCO(o-C6H4)Mn(CO)4?nLn[n = 0, R = Ch3, C2H5, C3H7, C6H5,CH2; R = C6H5, n = 1, L = E(C6H5)3, E = P, As, Sb; R = C6H5, n = 2, L = P(OR′)3, R′ = C6H5, CH3, C2H5, C3H7]. Steps of their complex reaction pathway are proposed. These orthometallated substances have been characterized by means of 1H-n.m.r., i.r. and u.v. spectroscopic measurements. The determination of the molecular structure of the two compounds RCO(o-C6H4)Mn(CO)3L [R = C2H5, L = CO; R = C6H5, L = As(C6H5)3] show that both contain a planar heterocyclic five-membered ring of the type .  相似文献   

12.
Bis(triorganometal) 1,2-dithiolates (R3M)2S2R′ [(HS)2R′ = C7H8S2 for toluene-dithiol-3,4 (H2TDT); M = Sn, Pb; R = Ph; or (HS)2R′ = C10H14S2 for 1,2-dimethyl-4,5-bis(mercaptomethyl)benzene (H2DBB); M = Sn, R = CH3, C6H5; M = Pb, R = C6H5], diorganometal 1,2-dithiolates R2MS2R′ [(HS)2R′ = C6H6S2 for 1,2-dimercaptobenzene (H2DMB); M = Pb, R = CH3, C2H5, C6H5; or (HS)2R′ = H2TDT; M = Sn, R = CH3, C6H5; M = Pb, R = C6H5; or (HS)2R′ = H2DBB; M = Sn, R = CH3, C6H5; M = Pb, R = CH3, C2H2, C6H5; or (HS)2R′ = C8H6N2S2 for 2,3-dimercaptoquinoxaline (H2QDT); M = Pb, R = C6H5] and some lead(IV) and lead(II) dithiolates Pb(S2R′)n [(HS)2R′ = H2DMB, n = 2; (HS)2R′ = H2TDT, n = 2; (HS)2R′ = H2DBB, n = 1 or 2] have been prepared. Vibrational, 1H NMR, and Mössbauer spectroscopic data are consistent with pentacoordination of tin in R2SnTDT and with tetracoordination of tin in R2SnS2R′ and (R3Sn)2S2R′ in the solid state. The soluble compounds are monomeric in solution. Coupling constants for the methyltin compounds indicate tetracoordination in solution.  相似文献   

13.
Reactions of reactive cyclopentadienyliron complexes C5H5Fe(CO)2I, [C5H5Fe(CO)2THF]BF4, [C5H5Fe(CO)((CH3)2S)2]BF4 and [C5H5Fe(p-(CH3)2C6H4)]PF6 with P(OR)3 as ligands (R = CH3, C2H5, i-C3H7 and C6H5) lead to the formation of the complex compounds C5H5Fe(CO)2?n(P(OR)3)nI and [C5H5Fe(CO)3?n(P(OR)3)n]X (n = 1, 2 and n = 1–3, X = BF4, PF6). Spectroscopic investigations (IR, 1H, 13C and 31P NMR) indicate an increase of electron density on the central metal with increasing substitution of CO groups by P(OR)3 ligands. The stability of the compounds increase in the same way.  相似文献   

14.
Aryl(chloromethyl)thallium chlorides, Ar(ClCH2)TlCl (Ar=C6H5, p-CH3C6H4) have been prepared by treatment of arylthallium dichlorides with diazomethane. The derived carboxylates, Ar(ClCH2)TlX, react with HgX2 to give the dicarboxylates, (ClCH2)TlX2 (X = OCOCH3, OCOC3H7-i) and with tetramethyltin to give CH3(ClCH2)TlX compounds. R(ClCH2)TIX compounds (R = CH3, C6H5, p-CH3C6H4) undergo disproportionation in methanol to R2TlX and (ClCH2)2TlX compounds.  相似文献   

15.
The cyclopentadienylcobalt(I) compounds C5H5Co(PMe3)P(OR)3 (R = Me, Et, Pri) and C5H5Co(C2H4)L (L = PMe3, P(OMe)3, CO) are prepared by ligand substitution starting from C5H5Co(PMe3)2 and C5H5Co(C2H4)2. Whereas the reaction of C5H5Co(PMe3)P(OMe)3 with CH2Br2 mainly gives [C5H5CoBr(PMe3)P(OMe)3]Br, the dihalogenocobalt(III) complexes C5H5CoX2(PMe3) (X = Br, I) are obtained from C5H5Co(CO)PMe3 and CH2X2. Treatment of C5H5Co(CO)PMe3 or C5H5Co(C2H4)PMe3 with CH2ClI at low temperatures produces a mixture of C5H5CoCH2Cl(PMe3)I and C5H5CoCl(PMe3)I, which can be separated due to their different solubilities. The same reaction in the presence of ligand L gives the carbenoidcobalt(III) compounds [C5H5CoCH2Cl(PMe3)L]PF6 in nearly quantitative yields. If NEt3 is used as the Lewis base, the ylide complexes [C5H5Co(CH2PMe3)(PMe3)X]PF6 (X = Br, I) are obtained. The PF6 salts of the dications [C5H5Co(CH2PMe3)(PMe3)L]2+ (L = PMe3, P(OMe)3, CNMe) and [C5H5Co(CH2PMe3)(P(OMe)3)2]2+ are prepared either from [C5H5Co(CH2PMe3)(PMe3)X]+ and L, or more directly from C5H5Co(CO)PMe3, CH2X2 and PMe3 or P(OMe)3, respectively. The synthesis of C5H5CoCH2OMe(PMe3)I is also described.  相似文献   

16.
The syntheses and properties of the titanium(III) complexes Cp2Tir · R′CN (R = C6H5, o-, m-, p-CH3C6H4, CH2C6H5, C6F5, Cl; R′ = CH3, t-C4H9, C6H5, o-CH3C6H4, 2,6-(CH3)2C6H3) are described. In the complexes the nitrogen atom of the cyanide ligands is coordinated to the metal. The thermal stabilities of the complexes depend markedly on R and R′; on heating they undergo a novel reaction in which two cyanide ligands are coupled by formation of a CC bond, while the metal is oxidized to titanium(IV).  相似文献   

17.
The 1∶2 molar reactions of tin(IV) chloride with the Schiff bases, CH3C(OH):CHC(CH3):NR and 2 HOC10H6CH:NR′ (where R=C2H5,n-C3H7 orn-C4H9 and R′=C6H5, C2H5,n-C4H9 ort-C4H9) have resulted in the synthesis of SnCl4·(SBH)2 type derivatives (whereSBH represents the Schiff base molecule). These have been characterized by elemental analysis, conductivity measurements and IR spectral studies.  相似文献   

18.
Carbon-13 chemical shifts and the POC, POCC, PNC and PNCC coupling constants of 18 compounds containing the amine moiety, and with the general formula Y2P(X)NHR [Y=C2H5O, C6H5O, CH2O, Y2=1,2-dioxybenzene; X = O or S; R = H, CH3, C2H5, PhCH2CH2, (CH3)2CH, C(CH3)3, C6H11, C6H5, C6H5NH] have been determined. The Y2P(X) group shows a sterically induced effect on the amine moiety; the 13C chemical shift of the Y group is, however, almost unaffected on replacing P(O) by a P(S) group.  相似文献   

19.
Cyclopentadienyl cobalt complexes (η5‐C5H4R) CoLI2 [L = CO,R=‐COOCH2CH=CH2 (3); L=PPh3, R=‐COOCH2‐CH=CH2 (6); L=P(p‐C6H4O3)3, R = ‐COOC(CH3) = CH2 (7), ‐COOCH2C6H5 (8), ‐COOCH2CH = CH2 (9)] were prepared and characterized by elemental analyses, 1H NMR, ER and UV‐vis spectra. The reaction of complexes (η5‐C5H4R)CoLI2 [L= CO, R= ‐COOC(CH3) = CH2 (1), ‐COOCH2C6H5(2); L=PPh3, R=‐COOC (CH3) = CH2 (4), ‐COOCH2C6H5 (5)] with Na‐Hg resulted in the formation of their corresponding substituted cobaltocene (η5‐C5H4R)2 Co[R=‐COOC(CH3) = CH2 (10), ‐COOCH2C6H5 (11)]. The electrochemical properties of these complexes 1–11 were studied by cyclic voltammetry. It was found that as the ligand (L) of the cobalt (III) complexes changing from CO to PPh3 and P(p‐tolyl)3, their oxidation potentials increased gradually. The cyclic voltammetry of α,α′‐substituted cobaltocene showed reversible oxidation of one electron process.  相似文献   

20.
Conclusions The reaction of N-[2-hydroxy-2-(2-vinyloxyethoxymethyl)ethyl]-bis(2-hydroxyethyl)amine with organyltriethoxysilanes at 20–40°C gave previously unreported 1-organyl-3-(2-vinyloxy-ethoxymethy)silatranes, (R=CH3, ClCH2, CH2=CH, C6H5, C2H5O).Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 3, pp. 740–742, March, 1989.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号