首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(C5H5)2Pb reacts with HX to give (C5H5)PbX or PbX2, X = Cl,Br,CH3CO2, with BF3·Et2O to give (C5H5)2PbBF3 and with TCNE to give (C5H5)2Pb·O·5TCNE or (C5H5)2Pb·TCNE.  相似文献   

2.
The reaction of tetracyanoethylene (TCNE) and 7,7,8,8-tetracyano-p-quinodimethane (TCNQ) with Fe(CO)(5) leads to formation of magnetically ordered materials of Fe[TCNE](2) (T(c) = 100 K) and Fe[TCNQ](2) (T(c) = 35 K) composition, respectively. In contrast, the reaction with 1,2-dichloro-5,6-dicyanobenzoquinone (DDQ) leads to a paramagnetic material.  相似文献   

3.
π‐Extended TCBD‐porphyrins that contained a 1,1,4,4‐tetracyanobuta‐1,3‐diene unit were prepared by a highly efficient [2+2] cycloaddition of tetracyanoethene (TCNE) or 7,7,8,8‐tetracyano‐p‐quinodimethane (TCNQ) with meso‐substituted trans‐A2B2‐porphyrins that contained two phenylethynyl groups, followed by a retro‐electrocyclization reaction. Depending on the electronic properties of the arylethynyl groups, the cycloaddition reaction took place exclusively on either one or two ethynyl moieties with high yield. The addition of TCNQ proceeded with complete regioselectivity. The resulting π‐expanded TCBD‐porphyrins had a hypsochromically shifted Soret band and showed unique, broad absorption in the visible region.  相似文献   

4.
《Polyhedron》2007,26(9-11):2135-2141
By using broken-symmetry hybrid-DFT (UB3LYP and UB2LYP) calculation, the effective exchange integrals (J values) of [Cr(C5(CH3)5)2]+[TCNE][Cr(C5(CH3)5)2]+ and [Mn(C5(CH3)5)2]+[TCNQ][Mn(C5(CH3)5)2]+ were determined theoretically. Those calculated models were reduced to 3-spin-sites models from X-ray crystallographic data of charge transfer 3D crystal. The calculated results showed that effective exchange integrals were positive and the signs of spin densities on the cyclopentadienyl rings were negative. These results supported the so-called McConnell I mechanism for ferromagnetism proposed by Kollmar et al. and our previous calculations. Natural orbital analysis made it clear that the orbital overlap between SOMO on metals and SOMO on TCNE or TCNQ cations was nearly zero. These results indicated that orbital orthogonality was an important key factor for explaining the ferromagnetism of those systems.  相似文献   

5.
The reaction of TCNE and TCNQ zwitterionic benzoquinonemonoimine derivatives under basic conditions resulted in HCN elimination to give a tricyanoethenyl derivative - which forms a π-complex with Pd(0)--or a stable malodinitrile salt, respectively. In the latter case, chemoselective C-alkylation was observed whereas oxidation led to dimerization by C-C coupling.  相似文献   

6.
The complexes {(mu4-TCNX)[Fe(CO)2(C5H5)]4}(BF4)4 were prepared as light-sensitive materials from [Fe(CO)2(C5H5) (THF)](BF4) and the corresponding TCNX ligands (TCNE = tetracyanoethene, TCNQ=7,7,8,8-tetracyano-p-quinodimethane, TCNB=1,2,4,5-tetracyanobenzene). Whereas the TCNE and TCNQ complexes are extremely easily reduced species with reduction potentials>+0.3 V vs ferrocenium/ferrocene, the tetranuclear complex of TCNB exhibits a significantly more negative reduction potential at about -1.0 V. Even for the complexes with strongly pi-accepting TCNE and TCNQ, the very positive reduction potentials, the unusually high nitrile stretching frequencies>2235 cm(-1), and the high-energy charge-transfer transitions indicate negligible metal-to-ligand electron transfer in the ground state, corresponding to a largely unperturbed (TCNX degrees)(FeII)4 formulation of oxidation states as caused by orthogonality between the metal-centered HOMO and the pi* LUMO of TCNX. M?ssbauer spectroscopy confirms the low-spin iron(II) state, and DFT calculations suggest coplanar TCNE and TCNQ bridging ligands in the complex tetracations. One-electron reduction to the 3+ forms of the TCNE and TCNQ complexes produces EPR spectra which confirm the predominant ligand character of the then singly occupied MO through isotropic g values slightly below 2, in addition to a negligible g anisotropy of frozen solutions at frequencies up to 285 GHz and also through an unusually well-resolved solution X band EPR spectrum of {(mu4-TCNE)[Fe(CO)2(C5H5)]4}3+ which shows the presence of four equivalent [Fe(CO)2(C5H5)]+ moieties through 57Fe and 13C(CO) hyperfine coupling in nonenriched material. DFT calculations reproduce the experimental EPR data. A survey of discrete TCNE and TCNQ complexes [(mu4-TCNX)(MLn)4] exhibits a dichotomy between the systems {(mu4-TCNX)[Fe(CO)2(C5H5)]4}4+ and {(mu4-TCNQ)[Re(CO)3(bpy)]4}4+ with their negligible metal-to-ligand electron transfer and several other compounds of TCNE or TCNQ with Mn, Ru, Os, or Cu complex fragments which display evidence for a strong such interaction, i.e., an appreciable value delta in the formulation {(mu4-TCNXdelta-)[Mx+delta/4Ln]4}. Irreversibility of the first reduction of {(mu4-TCNB)[Fe(CO)2(C5H5)]4}(BF4)4 precluded spectroelectrochemical studies; however, the high-energy CN stretching frequencies and charge transfer absorptions of that TCNB analogue also confirm the exceptional position of the complexes {(mu4-TCNX)[Fe(CO)2(C5H5)]4}(BF4)4.  相似文献   

7.
The reactions of the electron donor 1-methylpiperidine (1MP) with the π-acceptors 7,7,8,8-tetracyanoquinodimethane (TCNQ), tetracyanoethylene (TCNE), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), 2,3,5,6-tetrachloro-1,4-benzoquinone (chloranil = CHL) and iodine (I2) were studied spectrophotometrically in chloroform at room temperature. The electronic and infrared spectra of the formed molecular charge-transfer (CT) complexes were recorded. The obtained results showed that the stoichiometries of the reactions are not fixed and depend on the nature of the acceptor. Based on the obtained data, the formed charge-transfer complexes were formulated as [(1MP)(TCNE)2], [(1MP)(DDQ)]·H2O, [(1MP)(CHL)] and [(1MP)I]I3, while in the case of 1MP–TCNQ reaction, a short-lived CT complex is formed followed by rapid N-substitution by TCNQ forming the final reaction products 7,7,8-tricyano-8-piperidinylquinodimethane (TCPQDM). The five solids products were isolated and have been characterized by electronic spectra, infrared spectra, elemental analysis and thermal analysis.  相似文献   

8.
Closed-shell and DODS CNDO/2 calculations have been performed for neutral and charged TCNQ and TTF monomers and different dimers. For the sake of comparison the calculation have also performed for the corresponding TCNE molecules.The most important result obtained indicates a large splitting of the lowest unfilled level of TCNQ in going from the monomer to the stacked (TCNQ)2 dimer. The same holds true for the HOMO level of the (TTF)2 dimer. This indicates that one should expect a broad conduction band for the neutral poly (TCNQ) chain and a broad valence band for the neutral poly (TTF) chain. In order to test the quality of the CNDO/2 approximation scheme a comparison is attempted with existing experimental findings as well as with some MINDO results and available theoretical predictions within different approximation schemes.  相似文献   

9.
The TCNX ligands TCNE (tetracyanoethene) and TCNQ (7,7,8,8-tetracyano-p-quinodimethane) react instantaneously with (C5R5)2(CO)2Ti, R=H or Me, to yield highly air-sensitive mononuclear complexes (C5R5)2(CO)Ti(TCNX) of which the soluble species (R=Me) were characterized also in the oxidized and reduced forms through cyclic voltammetry, EPR, IR and UV-vis spectroelectrochemistry. While oxidation at rather low potentials yields labile carbonyltitanium(IV) species of the TCNX ligands, the reduction occurs stepwise at unusually negative potentials, first on the ligand (to yield coordinated TCNX2−) and then on the metal (to form TiII). For the neutral complexes (C5R5)2(CO)Ti2+q(TCNXq) the results support a rather large amount of charge transfer 1<q<2 from the metal to the acceptors TCNX. Evidence for the previously formulated {(μ-TCNE2−)[(C5H5)2TiIV(CO)]2}(TCNE2−) could not be found. The complexes (C5R5)2(CO)Ti(TCNE) are compared with related compounds (C5R5)2BrV(TCNE), (C6R6)(CO)2Cr(TCNE) and (C5R5)(CO)2Mn(TCNE).  相似文献   

10.
Perumal Rajakumar 《Tetrahedron》2004,60(10):2351-2360
Intramolecular McMurry coupling of dialdehydes derived from xylenyl dibromide and 4-hydroxy benzaldehyde afforded cis-stilbenophanes along with cyclophane diols. Stilbenophanes with a large cavity were also synthesized. Charge transfer complexations of the stilbenophanes with TCNE, TCNQ and PQT were studied. Some stilbenophanes form a relatively stronger complex with PQT rather than with TCNE and TCNQ.  相似文献   

11.
12.
The cyclophanes derived from 2,6-bis(chloromethyl)benzoquinone and suitable dithiols were reduced with sodium dithionate and then further coupled with various dibromides to give intra annularly linked bicyclic cyclophanes, which forms charge transfer complexes with TCNQ and TCNE.  相似文献   

13.
We investigated the photosensitizers effect on the photorefractive (PR) properties in five poly[methyl-3-(9-carbazolyl)propylsiloxane] (PSX-Cz)-based PR composites which were doped with various photosensitizers having each different electron affinity, such as 2,4,5,7-tetranitro-9H-fluorine-9yilden malonitrile (TeNFM), 2,4,7-trinitro-9-fluorenone (TNF), 9-dicyanomethylene-2,4,7-trinitro-fluorenone (TNFM), tetracyanoethylene (TCNE), and 7,7,8,8-tetracyanoquinnodimethane (TCNQ). At 632.8 nm, photo-charge generation efficiencies, photoconductivities, space charge field, four wave mixing diffraction efficiencies, and PR grating buildup times were measured as a function of external electric field. The photo-charge generation, which is dependent on the light absorption, was achieved through the charge transfer (CT) complexes between the PSX-Cz and each of the photosensitizers. The photon energy of the CT transition decreased with increasing electron affinity of the photosensitizer. In composites doped with TeNFM, TNF, and TNFM, the space charge field (Esc) increased as the photo-charge generation efficiency increased; the grating buildup in these composites is rate-limited by the photo-charge generation speed. In sample doped with TCNE, and TCNQ, the hole mobility was reduced due to the larger amount of photosensitizer anion traps produced by photoreduction of the photosensitizer. Then, the grating buildup speed became hole mobility limited, and smaller buildup rates were observed. The magnitude of space charge field was sustained as the charge and trap density increased. In all composites, the refractive index modulation is increased with the magnitude of space charge field.  相似文献   

14.
The reactions of [fac-Re(CO)(3)(bpy)(MeOH)](PF(6)), bpy = 2.2'-bipyridine, with the TCNX ligands (TCNE = tetracyanoethene, TCNQ = 7,7,8,8-tetracyano-p-quinodimethane, and TCNB = 1,2,4,5-tetracyanobenzene) in CH(2)Cl(2) gave very different results. No reaction was observed with TCNB whereas TCNE produced very labile intermediates which converted under mild conditions to structurally characterized [(mu-CN)[fac-Re(CO)(3)(bpy)](2)](PF(6)) with an eclipsed conformation relative to the almost linear Re-CN-Re axis (Re-N(NC) 2.134(8) A, Re-C(CN) 2.098(8) A). With TCNQ, a stable tetranuclear complex [(mu(4)-TCNQ)[Re(CO)(3)(bpy)](4)](BF(4))(4) was obtained. Its structural, electrochemical, and spectroscopic analysis indicates only negligible charge transfer from the rhenium(I) centers to the extremely strong pi acceptor TCNQ. Evidence includes a calculated charge of only -0.09 for coordinated TCNQ according to the empirical structure/charge correlation of Kistenmacher, a high-energy nitrile stretching band nu(CN) = 2235 cm(-1), and unprecedented large anodic shifts >0.7 V of the reduction potentials. DFT calculations were used to confirm and explain the absence of electron delocalization from the electron-rich metals to the TCNQ acceptor bridge. Correspondingly, the X-band and high-frequency (285 GHz) EPR data (g = 2.007) as well as the IR and UV-vis-NIR spectroelectrochemical results (marginal nu(CO) shifts, TCNQ(*-) chromophore bands) support the almost exclusive confinement of the added electron in [(mu(4)-TCNQ)[Re(CO)(3)(bpy)](4)](3+) to the TCNQ bridge.  相似文献   

15.
《化学:亚洲杂志》2017,12(22):2908-2915
A series of unsymmetrical (D‐A‐D1, D1‐π‐D‐A‐D1, and D1‐A1‐D‐A2‐D1; A=acceptor, D=donor) and symmetrical (D1‐A‐D‐A‐D1) phenothiazines ( 4 b , 4 c , 4 c′ , 5 b , 5 c , 5 d , 5 d′ , 5 e , 5 e′ , 5 f , and 5 f′ ) were designed and synthesized by a [2+2] cycloaddition–electrocyclic ring‐opening reaction of ferrocenyl‐substituted phenothiazines with tetracyanoethylene (TCNE) and 7,7,8,8‐tetracyanoquinodimethane (TCNQ). The photophysical, electrochemical, and computational studies show a strong charge‐transfer (CT) interaction in the phenothiazine derivatives that can be tuned by varying the number of TCNE/TCNQ acceptors. Phenothiazines 4 b , 4 c , 4 c′ , 5 b , 5 c , 5 d , 5 d′ , 5 e , 5 e′ , 5 f and 5 f′ show redshifted absorption in the λ =400 to 900 nm region, as a result of a low HOMO–LUMO gap, which is supported by TD‐DFT calculations. The electrochemical study exhibits reduction waves at low potential due to strong 1,1,4,4‐tetracyanobuta‐1,3‐diene (TCBD) and cyclohexa‐2,5‐diene‐1,4‐ylidene‐expanded TCBD acceptors. The incorporation of cyclohexa‐2,5‐diene‐1,4‐ylidene‐expanded TCBD stabilized the LUMO energy level to a greater extent than TCBD.  相似文献   

16.

Abstract  

DFT calculations of the complex ions {(μ4-TCNX)[Ru(NH3)5]4}8+, TCNX = tetracyanoethene (TCNE) and 7,7,8,8-tetracyano-p-quinodimethane (TCNQ), yield triplet state energy minimum structures with nonplanar bridging ligands. The calculated C–C bond distances and twist angles confirm considerable metal-to-ligand electron transfer from the metal centers to the TCNE and TCNQ bridges in the lowest triplet and singlet states. The resulting situation, involving a weak interaction between two strongly coupled malonodinitrilato-bridged Ru2.5Ru2.5 entities (Class III), agrees with experimental results; the near-orthogonality found for the ground states of the molecular ions explains the observed magnetic exchange coupling between two S = 1/2 sites, the 1,258 cm−1 absorption in the IR spectrum of the TCNE complex, and the reversible two-electron oxidation. The nitrile stretching frequency shifts were reasonably reproduced by the calculations. A density-of-states representation for the TCNQ complex shows a rather different electronic structure in comparison to that for the formally related {(μ4-TCNQ)[Re(CO)3(bpy)]4}4+, in particular a different frontier orbital situation. In contrast to the (TCNQ0)(ReI)4 situation, the tetraruthenium species with an approximate (TCNX2−)(Ru2.5)4 formulation represent unconventional mixed-valent tetranuclear compounds; in other words, weakly coupled pairs of strongly coupled dinuclear moieties. EPR spectroscopy at the W band frequency (95 GHz) of the TCNE compound confirms that the reduction of the complex leads to the oxidation of TCNE2− to yield a (TCNE•−)(RuII)4 species.  相似文献   

17.
Donor-substituted 1,1,2,4,4-pentacyanobuta-1,3-dienes and a cyclohexa-2,5-diene-1,4-diylidene-expanded derivative were prepared by a [2 + 2] cycloaddition of tetracyanoethene (TCNE) or 7,7,8,8-tetracyanoquinodimethane (TCNQ) to anilino-substituted cyanoalkynes, followed by retro-electrocyclisation; they feature intense bathochromically-shifted intramolecular charge-transfer bands and undergo their first one-electron reductions at potentials similar to those reported for TCNE and TCNQ.  相似文献   

18.
Reactions between nickel(II) and copper(II) salts [M(L) n ](ClO4)2 [L: 2-(pyrazole-1-ylmethyl)pyridine; n = 3 for Ni(II) and n = 2 for Ni(II) and Cu(II)] and LiTCNQ or mixture of LiTCNQ/TCNQ and Et3NH(TCNQ)2 yielded [Ni(L)3](TCNQ)2 · H2O, [Ni(L)2(TCNQ)2], [Ni(L)3](TCNQ)3, [Ni(L)2(TCNQ)3], and [Cu(L)2(TCNQ)3] · 3H2O. These complexes were characterized by infrared, electronic absorption, variable temperature magnetic moments and electron paramagnetic studies. Magnetic moments increase with increase in temperature attributed to contribution from TCNQ, which has also been examined by electron paramagnetic resonance.  相似文献   

19.
The reaction of organotin chlorides with the lithium salt of 7,7,8,8-tetracyanoquinodimethane (TCNQ) or hexaalkylditins with TCNQ yield stable organotin-substituted free radicals of the types R3SnTCNQ. (R = Me, n-Pr, n-Bu) and Me2Sn(TCNQ.)2. The reaction of hexaphenylditin with TCNQ yields a (σ → π) charge transfer complex of stoichiometry (Ph3SnSnPh3)·TCNQ, whilst [Me2SnCl(terpyridyl)+](TCNQ-·) was isolated from the reaction of [Me2SnCl(terpyridlyl)+][Me2SnCl3-] and LiTCNQ. The oxidation of hexaalkylditins by tetracyanoethylene (TCNE) yields stable free radicals of the type R3SnTCNE·, but treatment with 2,3,5,6-tetrachlorobenzoquinone yields either R3SnOC6Cl4O·-p (R = Me) or R3SnOC6Cl4OSnR3-p (R = n-Bu, Ph). Tin-119 Mössbauer spectroscopy shows that the derivatives R3SnTCNQ· and R3TCNE· have trigonally-bipyramidally coordinated tin with planar [SnC3] skeletons and bridging [TCNQ·] and [TCNE·] groups forming infinite one-dimensional chain structures. Me3SnOC6Cl4O·-p was inferred to possess a similar structure but with oxy bridges forming chains with a Sn---O---Sn---O backbone. Me2Sn(TCNQ·)2 has a structure intermediate between tetrahedral and octahedral with a non-linear MeSnMe unit and anisobidentate chelation by two TCNQ groups. The TCNQ derivatives were of two types: (i) “green” or “brown”, indicative of delocalisation of the Ione electron over the cyanoquinone ligand, and (ii) a “blue” form in which spin-pairing of the Ione electron between adjacent organic groups takes place. Me3SnTCNQ· may exist in both forms depending upon the mode of preparation.  相似文献   

20.
The interaction of the interesting polynitrogen cyclic base 1,4,7-trimethyl-1,4,7-triazacyclononane (TMTACN) with the sigma-acceptor iodine and pi-acceptors tetracyanoethylene (TCNE), 7,7,8,8-tetracyanoquinodimethane (TCNQ) and tetrachloro-p-benzoquinone (chloranil) have been studied spectrophotometrically and cyclic voltametrically in chloroform at 20 degrees C. Based on the obtained data, the formed charge-transfer complexes were formulated as [(TMTACN)I](+).I(3)(-), [(TMTACN)(TCNE)(5)], [(TMTACN)(TCNQ)(3)] and [(TMTACN)(chloranil)(3)] where the stoichiometry of the reactions, donor:acceptor molar ratios, were shown to equal 1:2 for iodine complex, 1:3 for chloranil and TCNQ complexes and 1:5 for TCNE complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号