首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vinyl‐type copolymerization of norbornene (NBE) and 5‐NBE‐2‐yl‐acetate (NBE‐OCOMe) in toluene were investigated using a novel homogeneous catalyst system based on bis(β‐ketonaphthylamino)Ni(II)/B(C6F5)3/AlEt3. The copolymerization behavior as well as the copolymerization conditions, such as the levels of B(C6F5)3 and AlEt3, temperature, and monomer feed ratios, which influence on the copolymerization were examined. Without combination of AlEt3, the catalytic bis(β‐ketonaphthylamino)Ni(II)/B(C6F5)3 exhibited very high catalyst activity for polymerization of NBE. Combination of AlEt3 in catalyst system resulted in low conversion for polymerization of NBE. For copolymerization of NBE and NBE‐OCOMe, involvement of AlEt3 in catalyst is necessary. Slight addition of NBE‐OCOMe in copolymerization of NBE and NBE‐OCOMe gives rise to significant increase of catalyst activity for catalytic system bis(β‐ketonaphthylamino)Ni(II)/B(C6F5)3/AlEt3. Nevertheless, excess increase of the NBE‐OCOMe content in the comonomer feed ratios results in decrease of conversion as well as activity of catalyst. The achieved copolymers were confirmed to be vinyl‐addition copolymers through the analysis of FTIR, 1H NMR, and 13C NMR spectra. 13C NMR studies further revealed the composition of the copolymer and the incorporation rate was 7.6–54.1 mol % ester units at a content of 30–90 mol % of the NBE‐OCOMe in the monomer feeds ratios. TGA analysis results showed that the copolymer exhibited good thermal stability (Td > 410 °C) and failed to observe the glass transitions temperature over 300 °C. The copolymers are confirmed to be noncrystalline by WAXD analysis results and show good solubility in common organic solvents. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3990–4000, 2009  相似文献   

2.
Two complexes Mt{C10H8(O)C[N(C6H5)]CH3}2 [Mt = Ni(II); Mt = Pd(II)] were synthesized, and the solid‐state structures of the complexes have been determined by single‐crystal X‐ray diffractions. Homopolymerization of norbornene (NB) and copolymerization of NB and 5‐norbornene‐2‐yl acetate (NB‐OCOCH3) were carried out in toluene with both the two complexes mentioned above in combination with B(C6F5)3. Both the catalytic systems exhibited high activity toward the homopolymerization of NB (as high as 2.7 × 105 gpolymer/molNi h, for Ni(II)/B(C6F5)3 and 2.1 × 105 gpolymer/molPd h for Pd(II)/B(C6F5)3, respectively.). Although the Pd(II)/B(C6F5)3 shows very lower activity toward the copolymerization of NB with NB‐OCOCH3, Ni(II)/B(C6F5)3 shows a high activity and produces the addition‐type copolymer with relatively high molecular weights (MWs; 1.80–2.79 × 105 g/mol) as well as narrow MW distribution (1.89–2.30). The NB‐OCOCH3 content in the copolymers can be controlled up to 5.8–12.0% by varying the comonomer feed ratios from 10 to 50%. The copolymers exhibited high transparency, high glass transition temperature (Tg > 263.9 °C), better solubility, and mechanical properties compared with the homopolymer of NB. The reactivity ratios of the two monomers were determined to be rNB‐OCOMe = 0.08, rNB = 7.94 for Ni(II)/B(C6F5)3 system, and rNB‐OCOMe = 0.07, rNB = 6.49, for Pd(II)/B(C6F5)3 system by the Kelen‐Tüdõs method. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Norbornene polymerizations proceeded in toluene with bis(β‐ketoamino)nickel(II) {Ni[CH3C(O)CHC(NR)CH3]2 [R = phenyl ( 1 ) or naphthyl ( 2 )]} complexes as the catalyst precursors and the organo‐Lewis compound tris(pentafluorophenyl)borane [B(C6F5)3] as a unique cocatalyst. The polymerization conditions, such as the cocatalyst/catalyst ratio (B/Ni), catalyst concentration, monomer/catalyst ratio (norbornene/Ni), polymerization temperature, and polymerization time, were studied in detail. Both bis(β‐ketoamino)nickel(II)/B(C6F5)3 catalytic systems showed noticeably high conversions and activities. The polymerization activities were up to 3.64 × 107 g of polymer/mol of Ni h for complex 1 /(B(C6F5)3 and 3.80 × 107 g of polymer/mol of Ni h for complex 2 /B(C6F5)3, and very high conversions of 90–95% were maintained; both polymerizations provided high‐molecular‐weight polynorbornenes with molecular weight distributions (weight‐average molecular weight/number‐average molecular weight) of 2.5–3.0. The achieved polynorbornenes were confirmed to be vinyl‐addition and atactic polymers through the analysis of Fourier transform infrared, 1H NMR, and 13C NMR spectra, and the thermogravimetric analysis results showed that the polynorbornenes exhibited good thermal stability (decomposition temperature > 410 °C). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4733–4743, 2007  相似文献   

4.
The polymerization of norbornene with bis(β‐ketonaphthylamino) palladium(II), Pd{CH3C(O)CHC[N(naphthyl)]CH3}2, in combination with tris(pentafluorophenyl)borane (B(C6F5)3), was investigated by varying the B:Pd(II) molar ratio, monomer concentration, reaction temperature, and time. The catalytic activity was found to reach 2.8 × 104 gPolymer/(molPd?h) and the obtained polynorbornene (PNBE) was confirmed to be vinyl addition polymer and showed good thermo‐stability (Tdec > 350°C), but exhibited poor solubility in organic solvents due to the relative higher stereo regularity. Pd{CH3C(O)CHC[N(naphthyl)]CH3}2/B(C6F5)3 system is also an active catalyst for copolymerization of norbornene and 5‐norbornene‐2‐yl acetate (NBE‐OCOCH3) in toluene with moderate yields (in 9.2–36.5% yields) and produces the addition‐type copolymer with relatively high molecular weights (0.96 × 104–2.13 × 104 g/mol). The incorporation of functional group in the copolymer can be controlled up to 0.9–23.5 mol% by varying the NBE‐OCOCH3 monomer feed ratios from 10 to 90%. The copolymers are proved to be noncrystalline and show good solubility in common organic solvents and excellent thermal stability up to 350°C. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The facile and efficient functionalization of polynorbornene has been achieved through direct copolymerization of norbornene (NB) with 5‐norbornene‐2‐yl acetate (NBA) or 5‐norbornene‐2‐methanol (NBM) using a series of β‐ketiminato Ni(II)‐Me pyridine complexes 1–4 (Scheme 2 ) in the presence of B(C6F5)3. Remarkably, the monomer conversion could reach up to about 96% in 10 min in the NB/NBA copolymerization. The copolymers with wide NBA contents (3.3–38.4 mol %) were obtained by variation of reaction conditions. These copolymers have high molecular weights (MWs) (Mn = 41.8–144 kg/mol) and narrow MW distributions (Mw/Mn = 1.80–2.27). In the absence of alkyl aluminum compounds, a monomer conversion of 81% was observed in the NB/NBM copolymerization, and copolymers with NBM content in the range of 11.2–21.8 mol % were obtained by variation of reaction conditions. In addition, Ni(II)‐Me pyridine complexes 2 was very active at a low B/Ni molar ratio of 6, while bis‐ligand complex 6 bearing the same ligand just showed moderate efficiency at a high B/Ni molar ratio of 20. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
A family of unsymmetrical 1,2‐bis(imino)acenaphthene‐palladium methyl chloride complexes [1‐[2,6‐{(C6H5)2CH}2‐ 4‐{C(CH3)3}‐C6H2N]‐2‐(ArN)C2C10H6]PdMeCl (Ar = 2,6‐Me2Ph Pd1 , 2,6‐Et2Ph Pd2 , 2,6‐iPr2Ph Pd3 , 2,4,6‐Me3Ph Pd4 , 2,6‐Et2‐4‐MePh Pd5 ) have been prepared and fully characterized by 1H/13C NMR, FTIR spectroscopies, and elemental analysis. X‐ray diffraction analysis of Pd2 complex revealed a square planar geometry. Upon activation with methylaluminoxane, all the palladium complexes displayed high activities for norbornene (NBE) homo‐polymerization producing insoluble polymer. For the copolymerization of NBE with ethylene, Pd4 complex exhibited good activities with high incorporation of ethylene (up to 59.2–77.4%) and the resultant copolymer showed high molecular weights as maximum as 150.5 kg mol−1. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 922–930  相似文献   

7.
Ethylene copolymerizations with norbornene (NBE) using half‐titanocenes containing imidazolin‐2‐iminato ligands, Cp′TiCl2[1,3‐R2(CHN)2C?N] [Cp′ = Cp ( 1 ), tBuC5H4 ( 2 ); R = tBu ( a ), 2,6‐iPr2C6H3 ( b )], have been explored in the presence of methylaluminoxane (MAO) cocatalyst. Complex 1a exhibited remarkable catalytic activity with better NBE incorporation, affording high‐molecular‐weight copolymers with uniform molecular weight distributions, whereas the tert‐BuC5H4 analog ( 2a ) showed low activity, and the resultant polymer prepared by the Cp‐2,6‐diisopropylphenyl analog ( 1b ) possessed broad molecular weight distribution. The microstructure analysis of the poly(ethylene‐co‐NBE)s prepared by 1a suggests the formation of random copolymers including two and three NBE repeating units. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2575–2580  相似文献   

8.
Fluorinated β‐ketonaphthyliminate ligand CF3C(O)CHC[HN(naphthyl)]CH3 ( L1 ) and Pd(II) complexes with dichelate fluorinated β‐ketonaphthyliminato ligand, {CF3C(O)CHC[N(naphthyl)]CH3}2Pd ( C1 ), as well as with monochelate fluorinated β‐ketonaphthyliminato ligand, {CF3C(O)CHC[N(naphthyl)]CH3}Pd(CH3)(PPh3) ( C2 ), were synthesized and their solid‐state structures were confirmed using X‐ray crystallographic analysis. The Pd(II) complexes were employed as precursors to catalyze norbornene (NB) homo‐ and copolymerization with ester‐functionalized NB derivative using B(C6F5)3 as a co‐catalyst. High activity up to 2.3 × 105 gpolymer molPd?1 h?1 for the C1 /B(C6F5)3 system and 3.4 × 106 gpolymer molPd?1 h?1 for the C2 /B(C6F5)3 system was exhibited in NB homopolymerization. Moreover, the Pd(II) complexes exhibited a high level of tolerance towards the ester‐functionalized MB monomer. In comparison with the C1 /B(C6F5)3 system, the C2 /B(C6F5)3 system exhibited better catalytic property towards the copolymerization of NB with 5‐norbornene‐2‐carboxylic acid methyl ester (NB‐COOCH3), and soluble vinyl‐addition‐type copolymers were obtained with relatively high molecular weights (3.6 × 104–7.5 × 104 g mol?1) as well as narrow molecular weight distributions (1.49–2.15) depending on the variation of monomer feed ratios. The NB‐COOCH3 insertion ratio in all copolymers could be controlled in the range 2.8–21.0 mol% by tuning a content of 10–50 mol% NB‐COOCH3 in the monomer feed ratios. Copolymerization kinetics were expressed by the NB and NB‐COOCH3 monomer reactivity ratios: rNB‐COOCH3 = 0.18, rNB = 1.28 were determined for the C1 /B(C6F5)3 system and rNB‐COOCH3 = 0.19, rNB = 3.57 for the C2 /B(C6F5)3 system using the Kelen–Tüdõs method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Novel nickel(II) bisbenzimidazole complexes were prepared via a three‐step synthetic procedure consisting of aniline/diacid condensation, ligand N‐alkylation, and metal complexation. The complexes were characterized by X‐ray crystallography and found to possess a pseudotetrahedral geometry. Upon activation with methylaluminoxane, these nickel bisbenzimidazoles did not polymerize simple olefins (e.g., ethylene, propylene, and 1‐butene) but were found to carry out the rapid and efficient polymerization of norbornene. The polynorbornene products were characterized by gel permeation chromatography/light scattering, 13C NMR, and IR, and their Mark–Houwink and dn/dc parameters were determined. The molecular weights of the polynorbornenes were very high (weight‐average molecular weight = 587,000–797,000 g/mol). 13C NMR suggested that the polymerization occurred via vinyl addition (i.e., a 2,3‐linked polymer); no ring‐opened product was observed. Thermogravimetric analysis indicated that the polynorbornenes were stable up to 400 °C under nitrogen. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2095–2106, 2003  相似文献   

10.
New norbornene derivatives synthesized from Pauson–Khand reaction products were homopolymerized and copolymerized with norbornene with an allyl–palladium complex as a catalyst. The ketone group was tolerated by the polymerization reaction. Monomers bearing protected alcohols were easily homopolymerized. Most of the homopolymers were soluble in tetrahydrofuran, CH2Cl2, toluene, and cyclohexane. As the steric bulkiness of the substituent increased, the chain length of the homopolymer decreased. Copolymers with a molecular weight of up to 153,800 were formed and were soluble in tetrahydrofuran, CH2Cl2, toluene, and diethyl ether. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 76–83, 2003  相似文献   

11.
Late transition metal (nickel, cobalt) complexes (1, 2) with β‐ketoamine ligand (L) based on the pyrazolone derivative are synthesized by condensing 1‐phenyl‐3‐methyl‐4‐benzoyl‐5‐pyrazolone with p‐fluoroaniline, and then treating the β‐ketoamine (L) produced with the respective metal halide. The bis(β‐ketoamine)metal complexes can act as catalyst precursors for norbornene polymerization with activation by methylaluminoxane. The effects of the central metal variation in the complex on catalyst activities and polymer microstructure are described. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The polymerization of norbornene has been investigated in the presence of different bis(salicylaldiminate)nickel(II) precursors activated by methylaluminoxane. These systems are highly active in affording nonstereoregular vinyl‐type polynorbornenes (PNBs) with high molecular weights. The productivity of the catalytic systems is strongly enhanced (up to 35,000 kg of PNB/mol of Ni × h) when electron‐withdrawing nitro groups are introduced on the phenol moiety. On the contrary, the presence of bulky alkyl groups on the N‐aryl moiety of the ligand does not substantially affect the activity or characteristics of the resulting PNBs. The catalytic performances are also markedly influenced by the reaction parameters, such as the nature of the solvent, the reaction time, and the monomer/Ni and Al/Ni molar ratios. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1514–1521, 2006  相似文献   

13.
Several titanium complexes based on aminodiol ligands were tested as initiators for the ring‐opening polymerization (ROP) of ε‐caprolactone under solution and bulk conditions. All complexes were found to be efficient under both conditions. For bulk polymerization at 70 °C, high activities were observed (113.3–156.2 gpoly mmolcat?1 h?1) together with controlled molar mass distribution. Kinetic studies revealed controlled polymerization, and the chain propagation was first order with respect to monomer conversion. One complex was also tested for the ROP of rac‐β‐butyrolactone and the end‐group analysis suggested that ring opening occurs through acyl‐oxygen bond cleavage via coordination–insertion mechanism. The microstructure analysis of polymer by 13C NMR indicates atactic polymer. Another complex was also found to be efficient initiator for the ROP of trimethylene carbonate under solution and bulk conditions. Again, end‐group analysis suggests coordination–insertion mechanism. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
(?)‐(1S,2R)‐Norbornene‐2‐carboxylic acid alkyl esters (alkyl = Me, Bz, L ‐menthyl, or D ‐menthyl) were successfully prepared by the Diels–Alder reaction of cyclopentadiene with (R)‐(?)‐pantolactone‐O‐yl acrylate followed by epimerization and column chromatography. The enantiomeric excess was 99.9%. These monomers were polymerized by Pd(II)‐based catalysts, and high yields of the polymers were obtained. The methyl ester gave an optically active polymer of high optical rotation (monomer [α]D = ?24.7, polymer [α]D = ?98.5). This high rotation value of the polymer was attributed to the isotactic chain regulation of the polymer. This high rotation was not observed with methyl esters prepared by the transesterification of menthyl esters. The stereoregular polymer exhibited notable resonance peaks at 39 ppm in 13C NMR spectra. No crystallinity was observed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1263–1270, 2006  相似文献   

15.
Polymerization of 2‐pentene with [ArN?C(An)C(An)·NAr)NiBr2 (Ar?2,6‐iPr2C6H3)] ( 1‐Ni) /M‐MAO catalyst was investigated. A reactivity between trans‐2‐pentene and cis‐2‐pentene on the polymerization was quite different, and trans‐2‐pentene polymerized with 1‐Ni /M‐MAO catalyst to give a high molecular weight polymer. On the other hand, the polymerization of cis‐2‐butene with 1‐Ni /M‐MAO catalyst did not give any polymeric products. In the polymerization of mixture of trans‐ and cis‐2‐pentene with 1‐Ni /M‐MAO catalyst, the Mn of the polymer increased with an increase of the polymer yields. However, the relationship between polymer yield and the Mn of the polymer did not give a strict straight line, and the Mw/Mn also increased with increasing polymer yield. This suggests that side reactions were induced during the polymerization. The structures of the polymer obtained from the polymerization of 2‐ pentene with 1‐Ni /M‐MAO catalyst consists of ? CH2? CH2? CH(CH2CH3)? , ? CH2? CH2? CH2? CH(CH3)? , ? CH2? CH(CH2CH2CH3)? , and methylene sequence ? (CH2)n? (n ≥ 5) units, which is related to the chain walking mechanism. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2858–2863, 2008  相似文献   

16.
A series of highly active ethylene polymerization catalysts based on bidendate α‐diimine ligands coordinated to nickel are reported. The ligands are prepared via the condensation of bulky ortho‐substituted anilines bearing remote push–pull substituents with acenaphthenequinone, and the precatalysts are prepared via coordination of these ligands to (DME)NiBr2 (DME = 1,2‐dimethoxyethane) to form complexes having general formula [ZN = C(An)‐C(An) = NZ]NiBr2 [Z = (4‐NH2‐3,5‐C6H2R2)2CH(4‐C6H4Y); An, acenaphthene quinone; R, Me, Et, iPr; Y = H, NO2, OCH3]. When activated with methylaluminoxane (MAO) or common alkyl aluminiums such as ethyl aluminium sesquichloride (EAS) all catalysts polymerize ethylene with activities exceeding 107 g‐PE/ mol‐Ni h atm at 30 °C and atmospheric pressure. Among the cocatalysts used EAS records the best activity. Effects of remote substituents on ethylene polymerization activity are also investigated. The change in potential of metal center induced by remote substituents, as evidenced by cyclic voltammetric measurements, influences the polymerization activity. UV–visible spectroscopic data have specified the important role of cocatalyst in the stabilization of nickel‐based active species. A tentative interpretation based on the formation of active and dormant species has been discussed. The resulting polyethylene was characterized by high molecular weight and relatively broad molecular weight distribution, and their microstructure varied with the structure of catalyst and cocatalyst. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1066–1082, 2008  相似文献   

17.
A series of palladium complexes ( 2a–2g ) ( 2a : [6‐tBu‐2‐PPh2‐C6H3O]PdMe(Py); 2b : [6‐C6F5–2‐PPh2‐C6H3O]PdMe(Py); 2c : [6‐tBu‐2‐PPhtBu‐C6H3O]PdMe(Py); 2d : [2‐PPhtBu‐C6H4O] PdMe(Py); 2e : [6‐SiMe3–2‐PPh2‐C6H3O]PdMe(Py); 2f : [2‐tBu‐6‐(Ph2P=O)‐C6H3O]PdMe(Py); 2g : [6‐SiMe3–2‐(Ph2P=O)‐C6H3S]PdMe(Py)) bearing phosphine (oxide)‐(thio) phenolate ligand have been efficiently synthesized and characterized. The solid‐state structures of complexes 2d , 2f and 2g have been further confirmed by single‐crystal X‐ray diffraction, which revealed a square‐planar geometry of palladium center. In the presence of B(C6F5)3, these complexes can be used as catalysts to polymerize norbornene (NB) with relatively high yields, producing vinyl‐addition polymers. Interestingly, 2a /B(C6F5)3 system catalyzed the polymerization of NB in living polymerization manner at high temperature (polydispersity index 1.07, Mn up to 1.5 × 104). The co‐polymerization of NB and polar monomers was also studied using catalysts 2a and 2f . All the obtained co‐polymers could dissolve in common solvent.  相似文献   

18.
An in situ generated cationic allylpalladium complex bearing N‐heterocyclic carbene (NHC) ligands, derived from the reaction of [(η3‐C3H5)Pd(NHC)Cl] with AgX (X = BF4 or SbF6), is an active catalyst for the addition polymerization of norbornene and norbornene derivatives [5‐norbornene‐2‐carboxylic acid methyl ester ( b ) and 5‐norbornene‐2‐carboxylic acid n‐butyl ester ( c )] with an ester group containing a large portion of endo‐isomers. The catalytic activities, polymer yields, molecular weights, and molecular weight distributions of polynorbornenes were investigated under various reaction conditions: the catalytic activity was highly dependent on the counteranion, the reaction solvent, and the reaction temperature. For b , as the portion of an endo‐isomer increased, the activity of 13 (SbF) was much higher than those of 14 and 15 , and for c (exo/endo = 95:5), the maximum turn over number (TON) was observed with 15 (SbF). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3042–3052, 2007  相似文献   

19.
Three novel functionalized polynorbornenes (PNB) with pendant dimethyl carboxylate group (carboxylates—acetate, propionate, and butyrate) are synthesized as a vinyl‐type with a palladium (II) catalyst in high yield. The effects of size of substitutents, molar ratio of monomer to catalyst, solvent polarity, reaction time, and temperature on the polymerization of exo‐norbornene dimethyl propionate were systematically investigated. The low molar ratio and temperature, as well as high polarity of solvent, and long reaction time, are favorable for the enhancement of the monomer conversion, especially, the solvent have an obvious effect on the catalyst activity. The resulting poly(cis‐norbornene‐exo‐2,3‐dimethyl carboxylates) (PNB‐dimethyl carboxylates) show good solubility in common organic solvent and high thermal stability up to 360 °C. The glass transition temperature was detected by DMA at 331, 324, and 318 °C for acetate, propionate, and butyrate, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3391–3399, 2007  相似文献   

20.
Polymerizations of 1,3‐dienes using in situ generated catalyst [(2‐methallyl)Ni][B(ArF)4], 6 , (ArF = 3,5‐bis(trifluoromethyl)phenyl) as well as [(2‐methallyl)Ni(mes)][B(ArF)4], 14 , (mes = mesitylene) are reported. Highly sensitive complex 6 polymerizes butadiene (BD) at –30 °C to yield polybutadiene with a Mn of ca. 10 K and 94% cis‐1,4‐enchainment while less reactive isoprene (IP) was polymerized at 23 °C to yield polyisoprene with Mn ca. 7 K. Complex 6 was also shown to polymerize a functionalized diene, 2,3‐bis(4‐trifluoroethoxy‐4‐oxobutyl)‐1,3‐BD, to polymer with Mn = 113 K. The stable and readily isolated arene complex 14 initiates BD and IP polymerizations at somewhat higher temperatures relative to 6 and delivers polymers with higher molecular weights. Complex [(allyl)Ni(mes)][B(ArF)4], 13 , catalyzes polymerization of styrene to yield polystyrene with high conversion, Mn's = ca. 6 K and MWD = 2. The π‐benzyl complex [(η3‐1‐methylbenzyl)Ni(mes)] [B(ArF)4], 19 , was detected as an intermediate following chain transfer by in situ NMR studies. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1901–1912, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号