首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New hydrated lanthanide phthalates have been hydrothermally prepared with cerium and neodymium in different reaction media involving water or mixed water-ethanol solvent. The monohydrated Ln2(1,2-bdc)3(H2O) (Ln=Ce or Nd) and dihydrated Nd2(1,2-bdc)3(H2O)2 forms have been characterized by single-crystal analysis. Their structures consist of infinite inorganic chains of lanthanide-centered polyhedra linked to each other through the phthalate ligands in order to generate mixed organic-inorganic layered structure. The two hydrated structures differ by the number of terminal water species attached to the lanthanide cations, which induce symmetry change from a triclinic (Nd2(1,2-bdc)3(H2O)2) to an orthorhombic (Nd2(1,2-bdc)3(H2O)2) cell for neodymium whereas the cerium-based phase only exists in the monohydrated form, with two distinct symmetries (orthorhombic or triclinic). Structural comparisons with the other members of the lanthanide phthalate series with identical chemical formula are also discussed. Thermal X-ray diffraction experiment indicates that the transformation from dihydrate form into the monohydrated form does not occur during a heating process.  相似文献   

2.
By replacing Mn in YCa3(MnO)3(BO3)4 with trivalent Al and Ga, two new borates with the compositions of YCa3(MO)3(BO3)4 (M=Al, Ga) were prepared by solid-state reaction. Structure refinements from X-ray powder diffraction data revealed that both of them are isostructural to gaudefroyite with a hexagonal space group P63/m. Cell parameters of a=10.38775(13)Å, c=5.69198(10)Å for the Al-containing compound and a=10.5167(3)Å, c=5.8146(2)Å for the Ga analog were obtained from the refinements. The structure is constituted of AlO6 or GaO6 octahedral chains interconnected by BO3 groups in the ab plane to form a Kagomé-type lattice, leaving trigonal and apatite-like tunnels. It is found that most rare-earth and Cr, Mn ions can be substituted into the Y3+ and M3+ sites, respectively, and the preference of rare-earth ions to locate in the trigonal tunnel is correlated to the sizes of the M3+ ions.  相似文献   

3.
A new ruthenium-rhodium mixed-metal cluster HRuRh3(CO)12 and its derivatives HRuRh3(CO)10(PPh3)2 and HRuCo3(CO)10(PPh3)2 have been synthesized and characterized. The following crystal and molecular structures are reported: HRuRh3(CO)12: monoclinic, space group P21/c, a 9.230(4), b 11.790(5), c 17.124(9) Å, β 91.29(4)°, Z = 4; HRuRh3(CO)10(PPh3)2·C6H14: triclinic, space group P1, a 11.777(2), b 14.079(2), c 17.010(2) Å, α 86.99(1), β 76.91(1), γ 72.49(1)°, Z = 2; HRuCo3(CO)10(PPh3)2·CH2Cl2: triclinic, space group P1, a 11.577(7), b 13.729(7), c 16.777(10) Å, α 81.39(4), β 77.84(5), γ 65.56°, Z = 2. The reaction between Rh(CO)4? and (Ru(CO)3Cl2)2 tetrahydrofuran followed by acid treatment yields HRuRh3(CO)12 in high yield. Its structural analysis was complicated by a 80–20% packing disorder. More detailed structural data were obtained from the fully ordered structure of HRuRh3(CO)10(PPh3)2, which is closely related to HRuCo3(CO)10(PPh3)2 and HFeCo3(CO)10(PPh3)2. The phosphines are axially coordinated.  相似文献   

4.
Crystals of C24H36N6O6Cr2 are monoclinic, a 15.380(3), b 13.965(2), c 14.459(3) Å, β 92.18(1)°; Z = 4; space group P21 with two independent molecules in the asymmetric unit. The crystal structure was determined from X-ray diffractometer data by direct methods and refined by least-squares methods to R = 0.066 for 2430 independent observed reflections. It consists of discrete molecules, in which each Cr atom is surrounded by three cis carbonyl groups and three cis nitrogen atoms of three 3,3,4,4-tetramethyl-1,2-diazetine ligands, in a deformed octahedral coordination. There is no evidence of intramolecular Cr ? Cr interaction.  相似文献   

5.
Syntheses and single-crystal X-ray diffraction studies have been completed on two cycloruthenapentadienyl (CO)6Ru2L2 derivatives, with L = CH2OHC = CCH2OH and C2H5C=CCH2CH2OH respectively. Crystal data are as follows: for [(CO)3RuC4(CH2OH)4]Ru(CO)3·H2O, P21/c, a 13.72(1), b 9.501(4), c 14.86(1) Å, β 101.10(6)°, Rw = 0.052 for 1911 reflections; for [(CO)3RuC4(CH2CH2OH)2(C2H5)2]Ru(CO)3, P21/c, a 9.191(3), b 16.732(4), c 14.903(3) Å, β 113.61(4)°, Rw = 0.042 for 2865 reflections. Both compounds are built up from binuclear units, each unit being regarded as a Ru(CO)3 fragment π-bonded to a cycloruthenapentadienyl ring. The molecular parameters are compared with those of known cyclometallapentadienyl complexes of transition metals. The presence of a semi-bridging CO group is discussed.  相似文献   

6.
Three new sodium cobalt (nickel) selenite compounds, namely, Na2Co2(SeO3)3, Na2Co1.67Ni0.33(SeO3)3, and Na2Ni2(SeO3)3 have been hydro-/solvothermally synthesized in the mixed solvents of acetonitrile and water. Single-crystal X-ray diffraction analyses reveal that these isostructural compounds belong to the orthorhombic Cmcm space group and their structures feature three-dimensional open frameworks constructed by the two-dimensional layers of [MSeO3] pillared by the [SeO3]2− groups. The two different types of Na+ ions reside in the intersecting two-dimensional channels parallel to the a- and c-axes, respectively. Their thermal properties have been investigated via TGA-DSC. The magnetic measurements indicate the existence of the antiferromagnetic interactions in these compounds.  相似文献   

7.
The reactions of [Fe3(CO)12] or [Ru3(CO)12] with RNC (R=Ph, C6H4OMe-p or CH2SO2C6H4Me-p) have been investigated using electrospray mass spectrometry. Species arising from substitution of up to six ligands were detected for [Fe3(CO)12], but the higher-substituted compounds were too unstable to be isolated. The crystal structure of [Fe3(CO)10(CNPh)2] was determined at 150 and 298 K to show that both isonitrile ligands were trans to each other on the same Fe atom. For [Ru3(CO)12] substitution of up to three COs was found, together with the formation of higher-nuclearity clusters. [Ru4(CO)11(CNPh)3] was structurally characterised and has a spiked-triangular Ru4 core with two of the CNPh ligands coordinated in an unusual μ32 mode.  相似文献   

8.
Twelve new trinuclear complexes containing terminal PH2Ph, edge-bridging PHPh and/or capping PPh ligands have been isolated from the reaction of M3(CO)12 (M = Ru or Os) with PH2Ph in refluxing solvents. HRu3(CO)10(PHPh) (IIIa) crystallises in the monoclinic space group P21/c with a = 8.761(3), b = 11.402(4), c = 22.041(7) Å,β = 98.89(2)°, and Z = 4. The structure was solved by a combination of direct methods and Fourier difference techniques, and refined by blocked-cascade least squares to R = 0.027 for 3676 unique observed intensities. The X-ray analysis shows that one edge of the Ru3 triangle is bridged by a hydride and the PHPh ligand, and that the phosphorus-bound hydrogen atom lies over the metal triangle and the phenyl group away from it. This provides an explanation for the ready formation of the capped species H2Ru3(CO)9(PPh) (Va) on pyrolysis of the edge-bridged complex as opposed to the previously reported conversion of HOs3(CO)10(NHPh) to an orthometallated derivative under similar conditions. An X-ray analysis of H2Ru3(CO)9-(PPh) (Va) confirms the capped geometry. the complex crystallises in the monoclinic space group P21/n with a = 9.323(4), b = 15.110(6), c = 45.267(15) Å,β = 91.84(3)°, and Z = 12. the structure was solved and refined using the same techniques as described previously. The final residual R is 0.061 for 4839 reflections. Some reactions of Va show that the phosphorous cap is difficult to displace and stabilises the molecule with respect to decomposition to non-cluster species.  相似文献   

9.
Thermal degradation of the cluster compound Os3(CO)8(PPh2H)(μ3-S)2 (I) at 125°C leads to decarbonylation and formation of the new ligand bridged hexanuclear cluster Os6(CO)14(μ-PPh2)23-S)34-S) (II) in 11% yield. Space Group: P1, No. 2, a 10.427(5), b 13.552(3), c 17.919(3) Å, α 84.87(2), β 75.41(3), γ 78.43(3)°, V 2399(2) Å3Z = 2, ?calc 2.82 g cm?3. The structure was solved by the heavy atom method and refined (3223 reflections) to the final residuals R = 0.042 and Rw = 0.036. The molecule consists of two sulfido bridged open triosmium clusters which are linked by a bridging sulfido ligand and a bridging diphenylphosphino ligand.  相似文献   

10.
The stabilities of simple and internally coordinated organozinc-transition metal compounds towards disproportionation have been investigated by the microwave titration technique. Simple alkyl- and aryl-derivatives disproportionate to such an extent as to preclude isolation. Internal coordination was found to stabilize the asymmetric compounds, and several derivatives containing the dimethylaminopropyl group were isolated. The crystal structure of one of them, Me2N(CH2)3-ZnW(Cp)(CO)3, was determined by a single-crystal X-ray study. The crystals are orthorhombic, space group P212121, with four molecular units in a cell with parameters a 8.406(1), b 12.179(2) and c 16.642(2) Å. The structure was solved by standard Patterson and Fourier techniques. The refinement, with anisotropic temperature factors for the two heavy atoms, converged at RF = 0.092 (RwF = 0.089) for 1536 observed reflections with I>2.5σ(I). The molecule consists of a central tungsten atom, surrounded in a tetragonal pyramidal fashion by a cyclopentadienyl group in the apical position and three carbon monoxyde molecules and a zinc atom occupying the basal positions. The zinc atom is three-coordinate, being surrounded by the tungsten atom and the chelating dimethylaminopropyl group; there is, however, a short intermolecular contact between zinc and a carbonyl oxygen atom at 2.61(3) Å.  相似文献   

11.
[Fe(CO)2 {P(OR)3}2 (SO2)] complexes (R = aryl) exist in solution as equilibrium mixtures of two isomers; both have been shown by X-ray diffraction studies (where R = Ph or o-MeC6H4) to have planar coordination about SO2 and trigonal bipyramidal coordination about Fe, but in one isomer (R = Ph) the equatorial plane is occupied by SO2 and two CO ligands whilst in the other one (R = o-MeC6H4) it is occupied by the SO2 and two P ligands.  相似文献   

12.
The new complex Ru3(CO)9(PPh2H)3 (I) was prepared by the direct thermal reaction of Ru3(CO)12 with PPh2 H and was spectroscopically characterized. Irradiation of I with λ ≥ 300 nm leads to the formation of Ru2(μ-PPh2)2(CO)6 (II) and three new phosphido-bridged complexes, Ru3(μ-H)2(μ-PPh2)2(CO)8 (III), Ru3(μ-H)2(μ-PPh2)2(CO)7(PPh2H) (IV) and Ru3(μ-H)(μ-PPh2)3(CO)7 (V). These complexes have been characterized spectroscopically and Ru3 (μ-H)(μ-PPh2)3(CO)7 by a complete single crystal X-ray structure determination. It crystallizes in the space group P21/n with a 20.256(3), b 22.418(6), c 20.433(5) Å, β 112.64(2)°, V 8564(4) Å3, and Z = 8. Diffraction data were collected on a Syntex P21 automated diffractometer using graphite-monochromatized Mo-Kα radiation, and the structure was refined to RF 4.76% and RwF 5.25% for the 8,847 independent reflections with F0 > 6σ(F0). The structure consists of a triangular array of Ru atoms with seven terminal carbonyl ligands, three bridging diphenylphosphido ligands which bridge each of the RuRu bonds, and the hydride ligand which bridges one RuRu bond. Complex IV was also shown to give V upon photolysis and is thus an intermediate in the photoinduced formation of V from I.  相似文献   

13.
In addition to well-known dinuclear phenylselenolato palladium complexes, the reaction of [PdCl2(PPh3)2] and NaSePh affords small amounts of novel trinuclear and hexanuclear complexes [Pd3Se(SePh)3(PPh3)3]Cl (1) and [Pd6Cl2Se4(SePh)2(PPh3)6] (2). Complex 1 is triclinic, P1?, a=13.6310(2), b=16.2596(2), c=16.9899(3) Å, α=83.1738(5), β=78.9882(5), γ=78.7635(5)°. Complex 2 is monoclinic, C2/c, a=25.7165(9), b=17.6426(8), c=27.9151(14) Å, β=110.513(2)°. There are no structural forerunners for 1, but the hexanuclear complex 2 is isostructural with [Pd6Cl2Te4(TeR)2(PPh3)6] (R=Ph, C4H3S) that have been observed as one of the products in the oxidative addition of R2Te2 to [Pd(PPh3)4]. Mononuclear palladium complexes may play a significant role as building blocks in the formation of the polynuclear complexes.  相似文献   

14.
New uranyl vanadates A3(UO2)7(VO4)5O (M=Li (1), Na (2), Ag (3)) have been synthesized by solid-state reaction and their structures determined from single-crystal X-ray diffraction data for 1 and 3. The tetragonal structure results of an alternation of two types of sheets denoted S for 2[UO2(VO4)2]4− and D for 2[(UO2)2(VO4)3]5− built from UO6 square bipyramids and connected through VO4 tetrahedra to 1[U(3)O5-U(4)O5]8− infinite chains of edge-shared U(3)O7 and U(4)O7 pentagonal bipyramids alternatively parallel to a- and b-axis to construct a three-dimensional uranyl vanadate arrangement. It is noticeable that similar [UO5]4− chains are connected only by S-type sheets in A2(UO2)3(VO4)2O and by D-type sheets in A(UO2)4(VO4)3, thus A3(UO2)7(VO4)5O appears as an intergrowth structure between the two previously reported series. The mobility of the monovalent ion in the mutually perpendicular channels created in the three-dimensional arrangement is correlated to the occupation rate of the sites and by the geometry of the different sites occupied by either Na, Ag or Li. Crystallographic data: 293 K, Bruker X8-APEX2 X-ray diffractometer equipped with a 4 K CCD detector, MoKα, λ=0.71073 Å, tetragonal symmetry, space group Pm2, Z=1, full-matrix least-squares refinement on the basis of F2; 1,a=7.2794(9) Å, c=14.514(4) Å, R1=0.021 and wR2=0.048 for 62 parameters with 782 independent reflections with I?2σ(I); 3, a=7.2373(3) Å, c=14.7973(15) Å, R1=0.041 and wR2=0.085 for 60 parameters with 1066 independent reflections with I?2σ(I).  相似文献   

15.
The reaction of n-butyllithium chelated to N,N,N′,N′-tetramethylethylenediamine (TMEDA) with acenaphthene results in 1,2-hydrogen abstraction to give the dilithio complex of acenaphthylene, [Li(CH3)2N(CH2)2N(CH3)2]2[C12H8]. This compound was isolated as a crystalline product and characterized by single crystal X-ray crystallography. [Li(CH3)2N(CH2)2N(CH3)2]2[C12H8] crystallizes with a unit cell of a = 23.164(10), b = 25.609(10) and c = 8.495(6) Å in the orthorhombice space group Fdd2. The calculated density is 1.04 g cm?3 for 8 molecules per unit cell. The observed density is 1.03(4) g cm?3. 1412 unique reflections were measured on a full circle X-ray diffractometer. The light atom, acentric structure was solved by the symbolic addition technique and refined by full matrix least squares to R1 = 0.058 and R2 = 0.056.The acenaphthylene fragment is nearly planar. The effect of charge transfer is evidenced in the short C(3)C(4) bond distance of 1.30(3) Å and the lengthening of the C(1)C(2) bond length from the localized olefinic bond distance of 1.34 to 1.42(2) Å. The two LiTMEDA fragments are coordinated to both sides of the five membered carbon atom ring of the acenaphthylene group.  相似文献   

16.
The structures of two carbonylphosphine complexes of chromium were determined by X-ray analysis. cis-Tricarbonyltriphosphinechromium(0), [(CO)3(PH3)3Cr], crystallizes in space group P21/m with a = 6.90± 0.01, b = 11.29±0.02, c = 6.41±0.01 Å, β = 93.80±0.08°, Z=2. The structure was solved by conventional methods and refined by least squares (R1 = 0.056). The idealized octahedral molecule shows approximate C3v, symmetry. The mean CrP-distance is 2.346±40.003 Å. Pentacarbonylphosphinechromium, [(CO)5(PH3)Cr], crystallizes in spacegroup Pnma with a = 12.23±0.02, b = 11.33±0.02, c = 6.61 ±0.01 Å, Z = 4. Cell dimensions and structural parameters are very similar to those of hexacarbonylchromium(0). In the crystal the PH3 group is disordered over three mutually cis-positions of the coordination octahedron.  相似文献   

17.
A new layered gallium phosphate [Co(en)3][Ga3(H2PO4)6(HPO4)3], denoted as GaPO-CJ14, has been synthesized solvothermally by using a racemic mix of chiral metal complex Co(en)3Cl3 as a template. Its structure was determined by single-crystal X-ray diffraction analysis and further characterized by X-ray powder diffraction, ICP, and TG analyses. The compound crystallizes in the monoclinic space group P21/m (No. 11) with a=9.2103(3), b=22.0936(8), c=9.5458(4) Å, β=108.278(2)°, Z=2, R1=0.0497 and wR2=0.1122 for all data. The inorganic layer is built up by alternation of Ga-centered octahedra (GaO6) and P-centered tetrahedra (PO3(OH), PO2(OH)2 , PO2(O)(OH) and PO(O)(OH)2) forming a 4.12-net. The sheet structure is featured by a series of structural units composed of two centrosymmetrically related [3.3.3] propellane-like chiral motifs. The metal complex cations locate in the interlayer region and interact with the host network through H-bonds.  相似文献   

18.
Ag4(Mo2O5)(SeO4)2(SeO3) has been synthesized by reacting AgNO3, MoO3, and selenic acid under mild hydrothermal conditions. The structure of this compound consists of cis-MoO22+ molybdenyl units that are bridged to neighboring molybdenyl moieties by selenate anions and by a bridging oxo anion. These dimeric units are joined by selenite anions to yield zigzag one-dimensional chains that extended down the c-axis. Individual chains are polar with the C2 distortion of the Mo(VI) octahedra aligning on one side of each chain. However, the overall structure is centrosymmetric because neighboring chains have opposite alignment of the C2 distortion. Upon heating Ag4(Mo2O5)(SeO4)2(SeO3) looses SeO2 in two distinct steps to yield Ag2MoO4. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): orthorhombic, space group Pbcm, a=5.6557(3), b=15.8904(7), c=15.7938(7) Å, V=1419.41(12), Z=4, R(F)=2.72% for 121 parameters with 1829 reflections with I>2σ(I). Ag2(MoO3)3SeO3 was synthesized by reacting AgNO3 with MoO3, SeO2, and HF under hydrothermal conditions. The structure of Ag2(MoO3)3SeO3 consists of three crystallographically unique Mo(VI) centers that are in 2+2+2 coordination environments with two long, two intermediate, and two short bonds. These MoO6 units are connected to form a molybdenyl ribbon that extends along the c-axis. These ribbons are further connected together through tridentate selenite anions to form two-dimensional layers in the [bc] plane. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): monoclinic, space group P21/n, a=7.7034(5), b=11.1485(8), c=12.7500(9) Å, β=105.018(1) V=1002.7(2), Z=4, R(F)=3.45% for 164 parameters with 2454 reflections with I>2σ(I). Ag2(MoO3)3SeO3 decomposes to Ag2Mo3O10 on heating above 550 °C.  相似文献   

19.
Cerium(III) diammonium polyphosphate, (NH4)2Ce(PO3)5, is triclinic P1 with the following unit cell dimensions: a = 7.241(5) Å, b = 13.314(8) Å, c = 7.241(5)Å, α = 90.35(5)°, β′ = 107.50(5)°, γ = 90.28(5)°, and Z = 2, V = 665.7 Å3, Dx = 2.85 g/cm3. The crystal structure of this new type of polyphosphate has been solved and refined from 4130 independent reflections to a final R value 0.029. The most interesting feature of this salt is the existence of two infinite crystallographically nonequivalent (PO3)? chains, one running parallel to the a axis, the other along the c axis, both with a period of five tetrahedra. This compound seems to be the first example of a long chain polyphosphate with crystallographic independent chains.  相似文献   

20.
Two novel Ni(II) complexes {[Ni(en)2(pot)2]0.5CHCl3} (3) {pot = 5-phenyl-1,3,4-oxadiazole-2-thione} (1) and [Ni(en)2](3-pytol)2 (4) {3-pytol = 5-(3-pyridyl)-1,3,4-oxadiazole-2-thiol} (2) have been synthesized using en as coligand. The metal complexes have been characterized by physical and analytical techniques and also by single crystal X-ray studies. The complexes 3 and 4 crystallize in monoclinic system with space group P21/a and P121/c, respectively. The complex 3 has a slightly distorted octahedral geometry with trans (pot) ligands while 4 has a square planar geometry around the centrosymmetric Ni(II) center with ionically linked trans (3-pytol) ligands. The π?π (face to face) interaction plays an important role along with hydrogen bondings to form supramolecular architecture in both complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号