首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Base catalysed condensation of a substituted 2‐hydroxyacetophenone with acetic anhydride and sodium acetate followed by cyclization of the intermediate with acid gave substituted 3‐acetyl‐2‐methyl‐4H‐1‐benzopyran‐4‐ones. These were then brominated with phenyltrimethylammonium tribromide (PTT) to yield the desired 3‐(2‐bromoacetyl)benzopyran‐4‐ones. The latter compound on treatment with primary and secondary aryl or alkyl amines, gave the corresponding benzopyran‐4‐one derivatives.  相似文献   

3.
4.
A series of new phenothiazylene vinylene‐based semiconducting polymers, poly[3,7‐(4′‐dodecyloxyphenyl)phenothiazylene vinylene] ( P1 ), poly[3,7‐(4′‐dodecyloxyphenyl)phenothiazylene vinylene‐alt‐1,4‐phenylene vinylene] ( P2 ), and poly[3,7‐(4′‐dodecyloxyphenyl)phenothiazylene vinylene‐alt‐2,5‐thienylene vinylene] ( P3 ), have been synthesized via a Horner‐Emmons reaction. FTIR and 1H NMR spectroscopies confirmed that the configurations of the vinylene groups in the polymers were alltrans (E). The weight‐averaged molecular weights (Mw) of P1 , P2 , and P3 were found to be 27,000, 22,000, and 29,000, with polydispersity indices of 1.91, 2.05, and 2.25, respectively. The thermograms for P1 , P2 , and P3 each contained only a broad glass transition, at 129, 167, and 155 °C, respectively, without the observation of melting features. UV–visible absorption spectra of the polymers showed two strong absorption bands in the ranges 315–370 nm and 450–500 nm, which arose from absorptions of the phenothiazine segments and the conjugated main chains. Solution‐processed field‐effect transistors fabricated from these polymers showed p‐type organic thin‐film transistor characteristics. The field‐effect mobilities of P1 , P2 , and P3 were measured to be 1.0 × 10?4, 3.6 × 10?5, and 1.0 × 10?3 cm2 V?1 s?1, respectively, and the on/off ratios were in the order of 102 for P1 and P2 , and 103 for P3 . Atomic force microscopy and X‐ray diffraction analysis of thin films of the polymers show that they have amorphous structures. A photovoltaic device in which a P3 /PC71BM (1/5) blend film was used as the active layer exhibited an open‐circuit voltage (VOC) of 0.42 V, a short circuit current (JSC) of 5.17 mA cm?2, a fill factor of 0.35, and a power conversion efficiency of 0.76% under AM 1.5 G (100 mW cm?2) illumination. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 635–646, 2010  相似文献   

5.
The dissipation of phorate in the sandy clay loam soil of tropical sugarcane ecosystem was studied by employing a single‐step sample preparation method and gas chromatography with mass spectrometry. The limit of quantification of the method was 0.01 μg/g. The recoveries of phorate, phorate sulfoxide, phorate sulfone, and phorate oxon were in the range 94.00–98.46% with relative standard deviations of 1.51–3.56% at three levels of fortification between 0.01 and 0.1 μg/g. The Half‐life of phorate and the total residues, which include phorate, phorate sulfoxide and phorate sulfone, was 5.5 and 19.8 days, respectively at the recommended dose of insecticide. Phorate rapidly oxidized into its sulfoxide metabolite in the sandy clay loam soil. Phorate sulfoxide alone accounted for more than 20% of the total residues within 2 h post‐application and it was more than 50% on the fifth day after treatment irrespective of the doses applied. Phorate sulfoxide and phorate sulfone reached below the detectable level on 105 and 135 days after treatment, respectively as against 45 days after treatment for phorate residues at the recommended dose. Thus, the reasonably prolonged efficacy of phorate against soil pests may be attributed to longer persistence of its more toxic sulfoxide and sulfone metabolites.  相似文献   

6.
The mechanism of the acetylene homologation procedure accidentally discovered and further developed by Crabbé and coworkers is unknown. Kinetic isotope effect (KIE) experiments, however, suggest that an intramolecular hydrogen shift is the key step of the transformation. In this work, we present a computational study of this mechanism. We found that the reaction proceeds via an unexpected stepwise retro‐imino‐ene rearrangement. This mechanism justifies the role of Cu(I) as a reaction catalyst and is also compatible with the KIE experiments reported. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
A series of novel branched polythiophene derivatives bearing different densities of vinylene‐bridges as linking chains were synthesized by a general synthetic strategy. The organic field‐effect transistors, which were fabricated by spin‐coating the polymer solutions onto octadecyltrichlorosilane‐modified SiO2/Si substrates with top‐contact configuration, afforded a high mobility of 8.0 × 10?3 cm2 V?1 s?1 with an on/off ratio greater than 104 and a threshold voltage of about ?3 V in saturation regime. The devices based on these polymers possessed better performance than those of polymers without conjugated bridges and polymers with longer conjugated bridges. These results demonstrated that the combination of conjugated polythiophene backbones and vinylene‐bridges would improve the carrier mobility. As an emerging class of conjugated materials, polymers with vinylene‐bridges as linking chains would open up new opportunities in organic electronics, and their applications in organic electronics are promising. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1381–1392, 2009  相似文献   

8.
The aim of this work was to clarify the mechanism taking place in field‐enhanced sample injection coupled to sweeping and micellar EKC (FESI‐Sweep‐MEKC), with the utilization of two acidic high‐conductivity buffers (HCBs), phosphoric acid or sodium phosphate buffer, in view of maximizing sensitivity enhancements. Using cationic model compounds in acidic media, a chemometric approach and simulations with SIMUL5 were implemented. Experimental design first enabled to identify the significant factors and their potential interactions. Simulation demonstrates the formation of moving boundaries during sample injection, which originate at the initial sample/HCB and HCB/buffer discontinuities and gradually change the compositions of HCB and BGE. With sodium phosphate buffer, the HCB conductivity increased during the injection, leading to a more efficient preconcentration by staking (about 1.6 times) than with phosphoric acid alone, for which conductivity decreased during injection. For the same injection time at constant voltage, however, a lower amount of analytes was injected with sodium phosphate buffer than with phosphoric acid. Consequently sensitivity enhancements were lower for the whole FESI‐Sweep‐MEKC process. This is why, in order to maximize sensitivity enhancements, it is proposed to work with sodium phosphate buffer as HCB and to use constant current during sample injection.  相似文献   

9.
10.
11.
The magnesium ferrite nanorods/graphene (MgFe2O4 NR/G) composites were prepared by a facile one‐step surfactant‐assisted solvothermal method. The structure and morphology of as‐prepared composite materials were characterized by electron microscopy, energy dispersive spectrometry, Raman spectrometry, X‐ray diffraction, FT‐IR and X‐ray photoelectron spectroscopy. The homogeneous MgFe2O4 nanorods with a typical diameter of about 100 nm were well distributed on graphene. The electromagnetic parameters were measured using a vector network analyzer. A minimum reflection loss (RL) of ?40.3 dB was observed at 14.9 GHz with a thickness of 3 mm, and the effective absorption frequency (RL  <   ? 10 dB) ranged from 12.0 to 18.0 GHz, indicating the remarkable microwave absorption performance of the MgFe2O4 NR/G composites. The absorbing property of as‐obtained composites was better than that of the pure MgFe2O4 nanorods. The synergistic effect of MgFe2O4 and graphene was responsible for the enhanced absorbing performance.  相似文献   

12.
The allenylidene-ruthenium complexes [(eta6-arene)RuCl(=C=C=CR2)(PR'3)]OTf (R2 = Ph; fluorene, Ph, Me; PR'3 = PCy3, P(i)Pr3, PPh3) (OTf = CF3SO3) on protonation with HOTf at -40 C are completely transformed into alkenylcarbyne complexes [(eta6-p-cymene)RuCl([triple bond]CCH=CR2)(PR3)](OTf)2. At -20 degrees C the latter undergo intramolecular rearrangement of the allenylidene ligand, with release of HOTf, into the indenylidene group in derivatives [(eta6-arene)RuCl(indenylidene)(PR3)]OTf. The in situ-prepared indenylidene-ruthenium complexes are efficient catalyst precursors for ring-opening metathesis polymerization of cyclooctene and cyclopentene, reaching turnover frequencies of nearly 300 s(-1) at room temperature. Isolation of these derivatives improves catalytic activity for the ring-closing metathesis of a variety of dienes and enynes. A mechanism based on the initial release of arene ligand and the in situ generation of the active catalytic species RuCl(OTf)(=CH2)(PR3) is proposed.  相似文献   

13.
14.
《Electrophoresis》2018,39(17):2262-2269
Every forty minutes, one person dies in the USA due to glioblastoma multiforme; a deadly form of brain cancer with an average five‐year survival rate less than 3%. The current standard of care for treatment involves surgical resection of the accessible tumor followed by radiation therapy and concomitant chemotherapy. Despite their potency, delivering chemotherapeutic agents to the brain is limited by the highly selective blood‐brain barrier, which prevents molecules >500 Da from reaching the brain. Other techniques, such as convection‐enhanced delivery, controlled release by drug‐loaded wafers or intracerebroventricular infusion have limited clinical utility due to unpredictable targeting and volume of drug distribution. We introduce a novel drug delivery technique that can use direct current electric fields to deliver charged chemotherapeutics to the site of brain parenchyma after tumor resection. We fabricate and characterize an implantable drug delivery system using flushable electrodes to deliver the charged chemotherapeutic or doxorubicin (+1) in a brain tissue‐mimic agarose gel (0.2% w/v) model by electrophoresis. The optimized capillary‐embedded electrode system exhibited a sustained movement of charged doxorubicin through nearly 3.5 mm in four hours, a distance for achieving effective intratumoral concentrations.  相似文献   

15.
Treatment of the side-on tungsten alkyne complex of ethinylethyl ether [Tp*W(CO)22-C,C′-HCCOCH2CH3)]+ {Tp* = hydridotris(3,4,5-trimethylpyrazolyl)borate} (2a) with n-Bu4NI afforded the end-on ketenyl complex [Tp*W(CO)21-HCCO)] (4a). This formal 16 ve complex bearing the prototype of a ketenyl ligand is surprisingly stable and converts only under activation by UV light or heat to form a dinuclear complex [Tp*2W2(CO)4(μ-CCH2)] (6). The ketenyl ligand in complex 4a underwent a metal template controlled cyclization reaction upon addition of isocyanides. The oxametallacycles [Tp*W(CO)22-C,O-C(NHXy)C(H)C(Nu)O}] {Nu = OMe (7), OEt (8), N(i-Pr)2 (9), OH (10), O1/2 (11)} were formed by coordination of Xy-NC (Xy = 2,6-dimethylphenyl) at 4a and subsequent migratory insertion (MI) into the W-ketenyl bond. The resulting intermediate is susceptible to addition reactions with protic nucleophiles. Compounds 2a-PF6, 4a/b, and 7–11 were fully characterized including XRD analysis. The cyclization mechanism has been confirmed both experimentally and by DFT calculations. In cyclic voltammetry, complexes 7–9 are characterized by a reversible W(ii)/W(iii) redox process. The dinuclear complex 11 however shows two separated redox events. Based on cyclic voltammetry measurements with different conducting electrolytes and IR spectroelectrochemical (SEC) measurements the W(ii)/W(iii) mixed valent complex 11+ is assigned to class II in terms of the Robin-Day classification.

The prototype ketenyl ligand is bound end-on despite a formal 16 valence electron count at the metal. This situation opens a reaction pathway for a multicomponent cyclization centred on the migration of the ketenyl ligand.  相似文献   

16.
Summary Interaction matrices, an expert semi quantitative method to identify multiple interactions among biotic and abiotic components of the ecosystem can be considered as a useful tool to develop conceptual models of the behavior of radionuclides in the environment. This systematic approach facilitates a comprehensible identification of the pathways of the main radionuclides and permits classification of the role of different ecosystem components in terms of cause-effect relationships. The method was applied to study the radiocesium migration in grassland ecosystem affected by the Chernobyl 137Cs deposition. Interaction matrices have been simultaneously utilized to explore the dynamic changes on the radiocesium migration pathways and to compare the consequences of the various radiation exposure paths to living organisms.  相似文献   

17.
A treatment based on the field‐theoretic formalism of Bohm and Pines is presented which reproduces theoretically the essential features of the Mott–Edwards–Sienko relation, na∼¼, for the location of the metal–insulator transition in doped dielectric media, where nc is the critical electron concentration and a is the effective radius. The model allows a study to be made of the dopant electronic wave function from the localized insulating state through to the metallic regime. The effective interparticle interaction shows Friedel oscillations and, at short range, is close to the Thomas–Fermi form. The doping dependence of the electronic hyperfine interaction, total dielectric constant, and ionization energy for a disordered collection of s‐state one‐electron atoms in a structureless dielectric medium are derived and both are found to be in satisfactory qualitative agreement with experiment. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 71: 111–120, 1999  相似文献   

18.
Extraction is the most important step in the purification of bioactive compounds from natural products. This study introduces a simple online extraction strategy coupled with high‐speed counter‐current chromatography for efficient extraction and purification of bioactive components from solid natural products. For online extraction strategy, 1.0 g of ground Mangnolia officinalis or Piper nigrum was loaded into a guard column, which was then positioned on the manual injection valve instead of the sample loop. Bioactive components were directly extracted by the mobile phase of high‐speed counter‐current chromatography, and then transferred into high‐speed counter‐current chromatography for purification. In addition, the compatibility of the developed methodology for direct purification of bioactive components from fresh M. officinalis was successfully demonstrated. Obviously, in comparison with traditional offline heat‐reflux extraction, online extraction avoided the instrument, time, solvent, and energy consumption, and purified two phenolic compounds (honokiol and magnolol) from M. officinalis and three alkaloids (piperyline, piperine, and piperanine) from P. nigrum with high extraction efficiency. The superiority of the developed methodology is to establish an easy, rapid, and efficient technique for the purification of a wide variety of bioactive components from solid natural products.  相似文献   

19.
Poly(amic acid) was synthesized with a low‐temperature solution polymerization of 3,3′‐dihydroxybenzidine and pyromellitic dianhydride in N,N‐dimethylacetamide. The cast films were thermally treated at various temperatures. The polyimide containing the hydroxyl group was rearranged by decarboxylation, resulting in a fully aromatic polybenzoxazole at temperatures higher than 430 °C. These stepwise cyclizations were monitored with elemental analysis, Fourier transform infrared, and nuclear magnetic resonance. Microanalysis results confirmed the chemical compositions of poly(amic acid), polyimide, and polybenzoxazole, respectively. A cyclodehydration from poly(amic acid) to polyimide occurred between 150 and 250 °C in differential scanning calorimetry, and a cyclodecarboxylation to polybenzoxazole appeared at 400–500 °C. All the samples were stable up to 625 °C in nitrogen and displayed excellent thermal stability. Polybenzoxazole showed better thermal stability than polyimide, but polyimide exhibited better mechanical properties than polybenzoxazole. However, polyimide showed a crystalline pattern under a wide‐angle X‐ray, whereas polybenzoxazole was amorphous. The precursor poly(amic acid) was readily soluble in a variety of solvents, whereas the polyimide and polybenzoxazole were not soluble at all. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2537–2545, 2000  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号