首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new octameric water cluster was observed in the complex Co2(dptc)(bipy)2(H2O)6 · 4H2O ( 1 ) (H4dptc = diphenyl‐3,3′,4,4′‐tetracarboxylic acid; bipy = 2,2′‐bipyridine), which was characterized by single‐crystal X‐ray diffraction, elemental analysis and IR spectroscopy. The centrosymmetric octamer consists of a water hexamer in the chair form and two water molecules and brings to light a novel mode of the cooperative association of water molecules. Those complex units are connected into a 2D infinite layer framework through hydrogen bonding. Consequently, the 2D layers are further aggregated by hydrogen bonding with octameric subunits and π ··· π stacking interactions to form a 3D supramolecular architecture.  相似文献   

2.
The β‐pyranose isomer of D ‐galactosylamine ( 1 ) formed complexes with three different cobalt(III) fragments. Crystals containing the dication [Co(tren)(β‐D ‐Galp1N2H–1‐κ2N1,O2)]2+ ( 3 ) showed coordination through the anomeric amino group (N1) and the deprotonated hydroxy group (O2) of the 4C1 β‐pyranose form, which is also the major isomer of free galactosylamine. The cationic complexes [Co(fac‐dien)(β‐D ‐Galp1N2H–1‐κ2N1,O2)]2+ ( 4 ) and [Co(phen)2(β‐D ‐Galp1N2H–1‐κ2N1,O2)]2+ ( 5 ) were analysed by NMR spectroscopy and showed the same coordination mode as 3 . In terms of available ligand isomers it was shown that 1 exhibits an anomeric equilibrium in solution of both pyranose and both furanose forms as is typical for the parent glycose, galactose.  相似文献   

3.
Treatment of copper(I) chloride with R2Si(NLiPh)2 (R = Me, Ph) in thf led to the formation of the octanuclear cluster compounds [Cu8{(R2Si(NPh)2}4] [R = Me ( 1 ), Ph ( 2 ).] Compound 1 crystallizes in the tetragonal space group P4/n, with a = 1505.41(5) and c = 1911.32(7) pm. The X‐ray crystal structure determination revealed a cube shaped Cu8 cluster core with μ4 bridging Me2Si(NPh)22– ligands. The copper atoms display an almost linear coordination with Cu–N distances in the range of 191.1(3)–191.4(3) pm. The Cu–Cu distances are 265.7(1)–267.3(1) pm. Compound 2 forms monoclinic crystals, space group P21/n, with a = 1461.87(4), b = 2483.77(6), c = 2725.49(8) pm, β = 100.77(1)°. The cluster core of compound 2 consists formally of two mutually perpendicular arranged trigonal prisms, which share a common square face. Like in the case of compound 1 the square faces of the cluster core are capped by μ4 bridging Ph2Si(NPh)22– ligands. The copper atoms adopt a nearly linear N–Cu–N coordination with Cu–N distances of 190.0(4)–195.1(4) pm. The Cu–Cu distances are 252.3(1)–305.6(1) pm.  相似文献   

4.
Two coordination polymers of cobalt acetate, [Co5(O2CMe)10] ( 1 ) and [Co(O2CMe)2(H2O)] · H2O ( 2 ), were solvothermally synthesized and characterized by single‐crystal and powder X‐ray diffraction analyses, IR spectroscopy, and elemental analysis. Compound 1 crystallizes in orthorhombic space group Pbcn in two‐dimensional layers, which consist of 12‐membered cobalt rings. Compound 2 crystallizes in monoclinic space group C2/m and exhibits one‐dimensional chains, which are bridged by one water molecule and two acetate ligands in (2.11)‐ and (2.20)‐modes. Preliminary magnetic studies revealed that antiferromagnetic couplings exist in both compounds.  相似文献   

5.
The series of binuclear Cu(II) and Ni(II) complexes with an asymmetrical exchange fragment based on 2,6‐diformyl‐4‐methylphenol bishydrazone has been synthesized for the first time. The compositions and structures of both ligands and its complexes have been established with the data of IR, 1H NMR, and extended X‐ray absorption fine structure (EXAFS) spectroscopical studies as well as magnetic measurements. The structure of [Ni2L3(μ‐Pz)] · 2CH3OH (L = triply deprotonated form of bishydrazone, Pz = pyrazol) was confirmed by X‐ray crystallographic analysis. In this complex, the coordination environment of two nickel ions is quite different, one nickel atom is square‐planar and the other is distorted octahedral coordinated. The values of exchange parameter calculated in terms of HDVV theory have been compared with the features of an asymmetrical exchange fragment's electronic and geometrical structure.  相似文献   

6.
Four salen‐type lanthanide(III) coordination polymers [LnH2L(NO3)3(MeOH)x]n [Ln = La ( 1 ), Ce ( 2 ), Sm ( 3 ), Gd ( 4 )] were prepared by reaction of Ln(NO3)3 · 6H2O with H2L [H2L = N,N′‐bis(salicylidene)‐1,2‐cyclohexanediamine]. Single‐crystal X‐ray diffraction analysis revealed that H2L effectively functions as a bridging ligand forming a series of 1D chain‐like polymers. The solid‐state fluorescence spectra of polymers 1 and 2 emit single ligand‐centered green fluorescence, whereas 3 exhibits typical red fluorescence of SmIII ions. The lowest triplet level of ligand H2L was calculated on the basis of the phosphorescence spectrum of GdIII complex 4 . The energy transfer mechanisms in the lanthanide polymers were described and discussed.  相似文献   

7.
Three new trinuclear nickel (II) complexes with the general composition [Ni3L3(OH)(X)](ClO4) have been prepared in which X=Cl? ( 1 ), OCN? ( 2 ), or N3? ( 3 ) and HL is the tridentate N,N,O donor Schiff base ligand 2‐[(3‐dimethylaminopropylimino)methyl]phenol. Single‐crystal structural analyses revealed that all three complexes have a similar Ni3 core motif with three different types of bridging, namely phenoxido (μ2 and μ3), hydroxido (μ3), and μ2‐Cl ( 1 ), μ1,1‐NCO ( 2 ), or μ1,1‐N3 ( 3 ). The nickel(II) ions adopt a compressed octahedron geometry. Single‐crystal magnetization measurements on complex 1 revealed that the pseudo‐three‐fold axis of Ni3 corresponds to a magnetic easy axis, being consistent with the magnetic anisotropy expected from the coordination structure of each nickel ion. Temperature‐dependent magnetic measurements indicated ferromagnetic coupling leading to an S=3 ground state with 2J/k=17, 17, and 28 K for 1 , 2 , and 3 , respectively, with the nickel atoms in an approximate equilateral triangle. The high‐frequency EPR spectra in combination with spin Hamiltonian simulations that include zero‐field splitting parameters DNi/k=?5, ?4, and ?4 K for 1 , 2 , and 3 , respectively, reproduced the EPR spectra well after a anisotropic exchange term was introduced. Anisotropic exchange was identified as Di,j/k=?0.9, ?0.8, and ?0.8 K for 1 , 2 , and 3 , respectively, whereas no evidence of single‐ion rhombic anisotropy was observed spectroscopically. Slow relaxation of the magnetization at low temperatures is evident from the frequency‐dependence of the out‐of‐phase ac susceptibilities. Pulsed‐field magnetization recorded at 0.5 K shows clear steps in the hysteresis loop at 0.5–1 T, which has been assigned to quantum tunneling, and is characteristic of single‐molecule magnets.  相似文献   

8.
Treatment of CuCl with the lithiated silyl amides RSi(NLiPh)3 (R = Me, Ph, Vin) in THF as solvent led to the formation of the novel CuI cluster compounds [Li(THF)4]2[Cu10{RSi(NPh)3}4]. For each of the three compounds the X‐ray crystal structure analysis revealed similar Si4N12Cu10 cores which are based on cubane like Cu8 cores bearing two additional peripheral copper atoms. The copper atoms are coordinated nearly linearly by the μ5‐bridging silyl amide ligands with Cu–N distances in the range of 187.1(3) to 194.5(4) pm and N–Cu–N angles of 171.6(1) to 178.7(1)°. For each of the compounds the structural parameters are very similar which indicates that the structures are barely influenced by the different steric requirements of the organic groups bound to silicon.  相似文献   

9.
Treatment of copper(I) halides CuX (X = Cl, Br, I) with lithium 2‐(diphenylphosphanyl)anilide [Li(HL)] in THF led to the formation of hexanuclear copper(I) complexes [Cu6X2(HL)4] [X = Cl ( 1 ), Br ( 2 ), I ( 3 )]. In compounds 1 – 3 , the copper atoms are in a distorted octahedral arrangement and the amide ligands adopt a μ3‐κP,κ2N bridging mode. Additionally there are two μ2‐bridging halide ligands. Each of the [Cu6X2(HL)4] clusters comprises two copper atoms, which are surrounded by two amide nitrogen atoms in an almost linear coordination [Cu–N: 186.2(3)–188.0(3) pm] and four copper atoms, which are connected to an amide N atom, a P atom, and a halogen atom in a distorted trigonal planar fashion [Cu–N: 199.6(3)–202.3(3) pm)].  相似文献   

10.
Three 1H‐benzimidazole‐5‐carboxylate (Hbic)‐based coordination polymers, {[Ni(H2O)(Hbic)2] · 2H2O}n ( 1 ), {[Ni(H2O)2(Hbic)2] · 3H2O}n ( 2 ), and {[Co2(H2O)4(Hbic)4] · 4DMF · 3H2O}n ( 3 ) were obtained by reactions of the ligand H2bic and NiII or CoII salts in the presence of different structure directing molecules. They were structurally characterized by single‐crystal X‐ray diffraction, IR spectra, elemental analysis, thermal stability, luminescent, and magnetic measurements. Structural analysis suggests that the three polymers exhibit a 2D (4, 4) layer for 1 and 1D linear double chains for both 2 and 3 due to the variable binding modes and the specific spatial orientation of the Hbic ligand towards the different paramagnetic metal ions, which were further aggregated into different 3D supramolecular architectures by popular hydrogen‐bonding interactions. Weak and comparable antiferromagnetic couplings mediating by Hbic bridge are observed between the neighboring spin carriers for 2 and 3 , respectively. Additionally, complexes 1 – 3 also display different luminescence emissions at room temperature due to the ligand‐to‐metal charge transfer.  相似文献   

11.
A new manganese(II) coordination polymer, [Mn3(atpt)3(2, 2′‐bpy)2]n ( 1 ) (H2atpt = 2‐aminoterephthalic acid; 2, 2′‐bpy = 2, 2′‐bipyridine), was synthesized by hydrothermal reaction of Mn(OAc)2, H2atpt, and 2, 2′‐bpy. It was structurally characterized by element analysis, IR spectroscopy, powder XRD, and magnetic measurements. X‐ray single‐crystal analysis was carried out for 1 , which crystallizes in the orthorhombic system, space group Pbca. The single X‐ray diffraction studies reveal that 1 consists of infinite layers of alternating trinuclear manganese subunits and H2atpt ligands. There are two types of different coordination modes of H2atpt in 1 . Magnetic susceptibility data for 1 were measured in the range 3–300 K. There are antiferromagnetic interactions between manganese ions of 1 .  相似文献   

12.
The reaction of Ph3SnCl, (R4N)2[Mo6O19] and (R4N)OH in a molar ratio of 6:1:10 leads to the formation of (R4N)[(Ph3Sn)MoO4] (R = nPr ( 1 ), nBu ( 2 )). Compounds 1· CH3CN and 2 have been charactarized by IR spectroscopy and single crystal X‐ray diffraction. 1· CH3CN forms orthorhombic crystals, space group P212121 with a = 1339.9(2), b = 1508.9(2), c = 1733.2(3) pm. 2 crystallizes in the monoclinic space group P21 with a = 1342.6(2), b = 2280.3(4), c = 1344.0(2) pm, β = 118.34(1). Both compounds 1 and 2 consist of isolated R4N+ cations and polymeric $\rm^{1}_{\infty}$ [(Ph3Sn)MoO4] chains with an alternating arrangement of Ph3Sn+ and MoO42– groups. Treatment of (Ph3Sn)2MoO4 with bis(ethylenediamine)copper(II) succinate yields [Cu(en)2(Ph3Sn)2(MoO4)2] ( 3 ). The zinc derivative [Zn(en)2(Ph3Sn)2(MoO4)2] ( 4 ) is obtained similarly by reaction of (Ph3Sn)2MoO4 with bis(ethylenediamine)zinc(II) formiate. Compounds 3· 2DMF · EtOH and 4· 2DMF · EtOH crystallize in the monoclinic space group P21/n with a = 1998.0(2), b = 1313.3(1), c = 2181.6(2) pm, β = 90.97(1)° for 3 and a = 2015.4(1), b = 1316.7(1), c = 2157.0(1) pm, β = 90.40(1)° for 4 . Like in the cases of 1 and 2, polymeric $\rm^{1}_{\infty}$ [(Ph3Sn)MoO4] chains are observed. The [M(en)2]2+ units (M = Cu, Zn) act as linkers between the $\rm^{1}_{\infty}$ [(Ph3Sn)MoO4] chains to give 2D layer structures with (6, 3) net topology.  相似文献   

13.
Reaction of nickel(II) thiocyanate and pyridazine (pdz) as organic spacer ligand leads to the formation of the ligand‐rich 1:2 (1:2 = metal to ligand ratio) trinuclear nickel(II) complex of composition [Ni3(NCS)6(pdz)6]. Depending on the reaction solvent, different polymorphic modifications are obtained: Reaction in acetonitrile leads to the formation of the new modification 1I and reaction in ethanol leads to the formation of modification 1II reported recently. In their crystal structures discrete [Ni3(NCS)6(pdz)6] units are found, in which each of the Ni2+ cations exhibits a NiN6 distorted octahedral arrangement. The central Ni2+ cation is coordinated by four bridging pdz ligands and two thiocyanato anions in trans positions. Both thiocyanato anions exhibit the end‐on bridging mode. The peripheral Ni2+ cations are bridged by one thiocyanato anion and by two pdz ligands with the central Ni2+ cation. Further they are coordinated by two terminal N‐bonded thiocyanato anions and one terminal N‐bonded pdz ligand. The structure of 1I was determined by X‐ray single crystal structure investigation and emphasized by infrared spectroscopy. Magnetic measurements revealed a quasi Curie behavior with net ferromagnetic interactions for 1I and net antiferromagnetic interactions for 1II . Solvent‐mediated conversion experiments clearly show that modification 1I represents the thermodynamic most stable form at room temperature and that modification 1II is metastable. On thermal decomposition, both modification transform quantitatively in a new ligand‐deficient intermediate. Elemental analysis revealed a 3:4 compound of composition [Ni3(NCS)6(pdz)4]. A structure model supported by IR spectroscopic investigations was assumed, in which three coordination modes of the thiocyanato anion exist, resulting in a 2D polymeric network.  相似文献   

14.
Four lanthanide coordination polymers with benzophenone‐4,4′‐dicarboxylic acid (H2bpndc) and 1,10‐phenanthroline (phen), [Ln2(bpndc)3(phen)] (Ln=La (1), Pr (2) and Tb (3)), [Yb(bpndc)15(phen)].05H2O (4) were obtained through solvothermal synthesis. The crystallographic data show that 1, 2, and 3 are isostructural, the Ln(III) ions in 1, 2 and 3 are all eight‐ and ten‐coordinated, respectively, and thus the Ln(III) ions are connected by bpndc ligands, resulting in an interpenetrating 3D structure. While in 4, the Yb(III) ions are eight‐coordinated and connected by bpndc ligands into a 3D structure with 1D rhombic channels, which result from the effect of lanthanide contraction from La(III) to Yb(III) ions, and the bpndc ligands in 1, 2, 3, and 4 display three types of coordination modes.  相似文献   

15.
The self‐assembly of Co(II) with two diaminodiamide ligands, 4,7‐diazadecanediamide and 4,8‐diazaundecanediamide, gave two different crystals, [(C8H18N4O2)Co(OH)2Co(C8H18N4O2)]Cl2 ( 1 ) [Co(C9H20N4O2)(Cl)(H2O)]·Cl·2H2O ( 2 ). Structures of 1 and 2 were characterized by single‐crystal X‐ray diffraction analysis. Structural data for 1 shows a novel type of binuclear complex with distorted octahederal coordination geometry around the Co atoms through the hydroxo bridges. By using inter‐connector N‐H···N hydrogen bonding interactions as building forces, each cationic moiety [(C8H18N4O2)Co(OH)2Co(C8H18N4O2)]2+ is linked to neighboring ones, producing a charged hydrogen‐bonded 1D chain‐like structure. The chains are further connected into a 2D layer in a (4,4)‐topology via N‐H···Clfree hydrogen‐bonding interactions. Structural data for 2 indicate that the cobalt atom adopts a six‐coordinated N2O4 environment, giving a distorted octahedral geometry, where two N‐ and two O‐donor sets of ligand located at equatorial positions and one water and one chloride occupied at axial positions. Through NH···Cl‐Co and OH···Cl‐Co contacts, each cationic moiety [Co(C9H20N4O2)(Cl)(H2O)]+ in 2 is linked to neighboring ones, producing a charged hydrogen‐bonded 1D chainlike structure. Thus, the crystal‐engineering approach has proved successful in the solid‐state packing due to steric strain effect of the diaminodiamide ligand.  相似文献   

16.
Direct reaction of stoichiometric amounts of KBr, tantalum and bromine at 720 °C, followed by extraction and crystallization gives Ta6Br14 · 7H2O (1) . This compound slowly aquates into [(Ta6Br12)(H2O)6]2+, which crystallized as mixed Cs+/Br ( 2 ), Cl ( 3 ) and SO42– ( 4 ) salts. In Bu4NBr melt, 1 undergoes oxidation into (Bu4N)2[(Ta6Br12)Br6] ( 5 ). Reaction of 1 with dimethylsulfoxide also induces oxidation of the { Ta6Br12} 2+ core into { Ta6Br12} 4+, and the corresponding complex [(Ta6Br12)(dmso)2Cl4] · iPrOH · 4.8H2O ( 6 ) was isolated and structurally characterized. Molecular and crystal structures for 2 – 6 were determined.  相似文献   

17.
Reaction of [{Cp(CO)3Mo}2SbCl] with S8 or Se8 leads to the formation of cluster compounds [{Cp(CO)2Mo}2ESbCl] (E = S, Se). [{Cp(CO)2Mo}2SSbCl] crystallizes monoclinic, space group P21/n with a = 812.28(3), b = 855.65(4), c = 2441.01(9) pm and β = 90.149(3)°; [{Cp(CO)2Mo}2SeSbCl] · CH2Cl2 crystallizes triclinic, space group P$\bar{1}$ with a = 828.82(9), b = 1002.8(1), c = 1340.0(2) and α = 109.24(1), β = 100.87(1), γ = 96.81(1)°. For both compounds X‐ray crystal structure analysis reveals tetrahedral Mo2SbE cluster cores with Sb–E bond lengths of 256.8(1) pm (E = S) and 265.3(1) (E = Se). According to the 18 electron rule the [{Cp(CO)2Mo}2ESbCl] clusters can be regarded as complexes of the 4 electron donator ESbCl that is coordinated “side‐on” to a {Cp(CO)2Mo}2 fragment.  相似文献   

18.
Mononuclear copper(II) and trinuclear cobalt(II) complexes, namely [Cu(L1)]2 · CH2Cl2 and [{Co(L2)(EtOH)}2Co(H2O)] · EtOH {H2L1 = 4,6‐dichloro‐6′‐methyoxy‐2,2′‐[1,1′‐(ethylenedioxydinitrilo)dimethylidyne]diphenol and H3L2 = 6‐ethyoxy‐6′‐hydroxy‐2,2′‐[1,1′‐(ethylenedioxydinitrilo)dimethylidyne]diphenol}, were synthesized and characterized by elemental analyses, IR and UV/Vis spectroscopy, and single‐crystal X‐ray diffraction. In the CuII complex, the CuII atom is four‐coordinate, with a N2O2 coordination sphere, and has a slightly distorted square‐planar arrangement. Interestingly, the obtained trinuclear CoII complex is different from the common reported 2:3 (L:CoII) salamo‐type CoII complexes. Infinite 2D layer supramolecular structures are formed via abundant intermolecular hydrogen bonding and π ··· π stacking interactions in the CuII and CoII complexes.  相似文献   

19.
Three coordination compounds [Mn3(dmb)6(H2O)4(4, 4′‐bpy)3(EtOH)]n ( 1 ) and [M(dmb)2(pyz)2 (H2O)2] [MII = Co ( 2 ), Mn ( 3 )] (Hdmb = 2, 6‐dimethoxybenzoic acid, 4, 4′‐bpy = 4, 4′‐bipyridine, pyz = pyrazine) were synthesized and characterized by single‐crystal X‐ray diffraction analysis. Compound 1 consists of infinite 1D polymeric chains, in which the metal entities are bridged by 4, 4′‐bpy ligands. There are four crystallographically independent MnII atoms in the linear chain with different coordination modes, which is only scarcely reported for linear polymers. The isostructural crystals of 2 and 3 are composed of neutral mononuclear complexes. In crystal the complexes are combined into chains by intermolecular O–H ··· N hydrogen bonds and π–π interactions between antiparallel pyrazine molecules.  相似文献   

20.
Two cobalt complexes, [Co3(L)2(CH3OH)23‐OH)2] ( 1 ) and [Co(L)(bpe)0.5] · H2O ( 2 ) [H2L = 5‐(4‐carboxyphenoxy)‐pyridine‐2‐carboxylic acid; bpe = 1, 2‐bis(4‐pyridyl)ethylene] were synthesized and fully characterized by elemental analyses, IR spectroscopy, single‐crystal X‐ray diffraction, thermogravimetric analysis (TGA), and magnetic analysis. Complex 1 has a two‐dimensional (2D) structure with puckered Co–O–Co chains, and 2 displays a three‐dimensional (3D) network containing one‐dimensional rectangular channels with dimensions of 9.24 × 13.84 Å. In complex 1 , variable‐temperature magnetic susceptibility measurements indicate antiferromagnetic interactions between cobalt magnetic centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号