首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 483 毫秒
1.
TiO2 and Al‐doped TiO2 (ATO) films were grown on Ir substrates by atomic layer deposition using O3 as the oxygen source. With increasing O3 feeding time, the crystalline structure of the TiO2 films was transformed from anatase to rutile. Above an O3 feeding time of 35 s, the films crystallized as only rutile due to the formation of IrO2 layer at the interface. The TiO2 and ATO films showed higher dielectric constants of 78 and 51, respectively. The films on Ir showed superior leakage properties compared to the films on Ru due to the high work‐function of Ir. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Bimetal incorporated TiO2 photocatalysts (FeZn–TiO2) prepared by a flame method showed high photocatalytic activity for the degradation of 2-propanol dissolved in water as compared with mono-metal incorporated or unincorporated TiO2. By using this flame method, parameters such as uniform particle size, crystallinity as well as the anatase and rutile phase ratio (anatase/rutile) could be controlled without calcination of the catalysts at high temperatures, the parameters being important to achieve a high photocatalytic activity. The presence of a small amount of bimetals such as Fe and Zn plays a vital role as a catalyst in the formation of highly crystalline, small and uniform size particles with defined anatase/rutile phase ratio of around 60/40, this being similar to that of P-25 which is well known as a highly active photocatalyst.  相似文献   

3.
Titania (TiO2) exists in several phases possessing different physical properties. In view of this fact, we report on three types of hydrogen sensors based on individual TiO2 nanotubes (NTs) with three different structures consisting of amorphous, anatase or anatase/rutile mixed phases. Different phases of the NTs were produced by controlling the temperature of post‐anodization thermal treatment. Integration of individual TiO2 nanotubes on the chip was performed by employing metal deposition function in the focused ion beam (FIB/SEM) instrument. Gas response was studied for devices made from an as‐grown individual nanotube with an amorphous structure, as well as from thermally annealed individual nanotubes exhibiting anatase crystalline phase or anatase/rutile heterogeneous structure. Based on electrical measurements using two Pt complex contacts deposited on a single TiO2 nanotube, we show that an individual NT with an anatase/rutile crystal structure annealed at 650 °C has a higher gas response to hydrogen at room temperature than samples annealed at 450 °C and as‐grown. The obtained results demonstrate that the structural properties of the TiO2 NTs make them a viable new gas sensing nanomaterial at room temperature. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

4.
The transient absorption properties of several commercially available TiO2 photocatalysts were investigated by femtosecond diffuse-reflectance spectroscopy. Using femtosecond diffuse-reflectance spectroscopy, the quantities and rates of the initial trapping processes of holes and electrons generated by the photoexcitation of TiO2 photocatalysts were investigated. It was found that the total amounts of trapped electrons for the pure-anatase and pure-rutile TiO2 became smaller with increasing particle size, but increased again when the particles’ diameters were larger than 50 nm. The anatase–rutile mixed TiO2 photocatalysts were found to have smaller amounts of trapped electrons compared with pure-anatase and pure-rutile TiO2 photocatalysts. The lifetimes of trapped holes of various TiO2 photocatalysts were also investigated, and it was found that the lifetimes were proportional to the anatase–rutile mixed ratios.  相似文献   

5.
The formation of submicron TiO2 smoke (a gas‐phase suspension) from titanium tetrachloride in a low‐pressure hydrolysis reaction in a simple reactor configuration has been studied. Particle size distribution, particle morphology and degree of crystallinity have been characterized as a function of reaction conditions. Highly crystalline anatase TiO2 particles with narrow size distribution and smaller particle size were formed at high reactor temperature, while larger, amorphous particles were found at lower reactor temperatures. These results are consistent with literature studies. At 817 °C, small (450 nm), spherical, unagglomerated particles could be produced. A gas‐phase dispersion of these particles is intended for use as seeds in subsequent kinetic studies of titanium dioxide formation reactions involving a rapid compression methodology.  相似文献   

6.
In this paper, anatase and rutile TiO2 nanoparticles as well as their mixed crystal phase structure TiO2 nanoparticles were synthesized by a sol‐hydrothermal method, and were served as active substrates for surface‐enhanced Raman scattering (SERS) study. The results show that the 4‐mercaptobenzoic acid probe molecules exhibit different degree SERS enhancements on the surface of different phase structure TiO2 nanoparticles. The mixed crystal structure TiO2 with an appropriate proportion of anatase and rutile phase is favourable to SERS enhancement of adsorbed molecules. These are mainly attributed to the contributions of the TiO2‐to‐molecule charge transfer mechanism and the mixed crystal effect. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Crystalline rutile TiO2 films were grown by atomic layer deposition on oxidized Ru electrodes using a titanium methoxide as the metal precursor and O3 as the oxidant. A protective layer of ~0.3 nm TiO2 grown with H2O as the oxidant was first deposited in order to avoid etching of the Ru bottom electrode by the O3 used for the growth of the TiO2 (bulk) layer. Electrical evaluation of the capacitor stacks with TiO2 as dielectric, RuO2/Ru and Pt as the bottom and top electrodes respectively, resulted in superior characteristics of the rutile phase as compared to the anatase. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Titanium dioxide ultrafine particles (UFPs) are produced by pulsed laser ablation of titanium or titanium dioxide (anatase and rutile) rods in an atmosphere of He or O2/He mixture. The collected UFPs on cellulose membrane filters at the exit of the ablation chamber are analyzed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The TiO2 particles produced are composed of very small particles (diameter: 10–50nm) that are completely anatase, irrespective of the rod material, and relatively large particles (diameter: 100nm–1m) that are a mixture of anatase and rutile. The large particles consist of the direct strip-off fragments coming from the rod surface. The particles obtained from the laser ablation on TiO2 rods in an atmosphere of He contains gray particles that are supposed to be amorphous TiO2 (x < 2). In the presence of O2 in the ablation chamber, these oxygen defects in amorphous TiO2 are stabilized and anatase UFPs are formed. These results suggest that the crystal phase of the products can be controlled by adjusting the rod material and the gases used in the ablation process.  相似文献   

9.
Hydrothermal method was used to prepare TiO2 nanoparticles with annealing temperature at 500 °C–700 °C. The mixture of anatase-rutile phase was investigated by powerful tool of X-ray diffraction (XRD). The structural parameters of anatase and rutile mixture phaseTiO2 nanoparticles were calculated from the Rietveld refinement. The transformation rate of rutile was increased linearly with an annealing temperature of 500 °C–700 °C. The spherical morphology of the anatase and rutile mixed phase were obtained by scanning electron microscope and transmission electron microscope. The spherical particle of the anatase and rutile TiO2 shows with great aggregation with different size and within the range of few tens nm. The EDAX study revealed the presence of titanium and oxygen. The best photocatalytic activity was identified as the 87.04% of anatase and 12.96% of rutile mixer phase of TiO2. Various factors could be involved for a better photocatalytic activity.  相似文献   

10.
In the present work anatase–rutile transformation temperature and its effect on physical/chemical properties as well as photocatalytic activity of TiO2 particles were investigated. The characterisation of the synthesised and annealed TiO2 particles were determined by X-Ray Powder Diffraction (XRD), scanning electron microscope (SEM), dynamic light scattering (DLS) and Brunauer–Emmett–Teller surface area analysis (BET). The refraction in the ultraviolet–visible (UV–vis) range was assessed using a dual-beam spectrophotometer. The photocatalytic performance of the particles was tested on methylene blue solution. The XRD data indicated that the percentage of rutile increased with the annealing temperature and almost 100% of anatase transformed to rutile at 1000 °C. In addition, the phase transformation was a linear function of annealing temperature so phase composition of TiO2 can be controlled by changing the annealing temperature. The SEM and BET results presented the increase of agglomerate size and the decrease of specific surface area with the increasing annealing temperature. This proved that anatase has smaller particle size and higher surface area than rutile. The photocatalytic activity of the annealed TiO2 powders reduced with the increase of annealing temperature. The samples annealed at 900 °C and 925 °C with anatase: rutile ratio of 92:8 and 77:23, respectively, showed the best activity. These results suggested that the photocatalytic activity of TiO2 particles is a function of phase composition. Thus it can be enhanced by changing its phase composition which can be controlled by annealing temperature.  相似文献   

11.
Watson  S.  Beydoun  D.  Scott  J.  Amal  R. 《Journal of nanoparticle research》2004,6(2):193-207
Nanocrystalline titanium dioxide (TiO2) particles were prepared by a modified alkoxide method under acidic conditions at temperatures ranging from 60°C to 90°C. The reaction temperature was used to control the crystalline phase of the TiO2 particles. At 60°C and 75°C rutile was formed whilst at 90°C anatase and brookite were formed.The photocatalytic activity of the prepared particles was tested for the degradation of sucrose. The photocatalytic activities of the prepared nanosized TiO2 were compared to those obtained from Degussa P-25 TiO2 as well as TiO2 crystalline samples prepared using the conventional sol–gel/heat treatment method. At low organic concentrations, Degussa P-25 exhibited higher photocatalytic behaviour than all the prepared particles while, at high organic concentrations, the nanosized TiO2 particles prepared at low temperature displayed an activity comparable to Degussa P-25 but much higher than the heat treated sample. The formation of excess intermediates during the degradation of higher sucrose loadings is believed to hinder the photoactivity of Degussa P-25, while the prepared TiO2 particles are able to maintain their activity for the degradation of the intermediates of sucrose.  相似文献   

12.
Titanium dioxide (TiO2) rutile single crystal was irradiated by infrared femtosecond (fs) laser pulses with repetition rate of 250 kHz and phase transformation of rutile TiO2 was observed. Micro-Raman spectra show that the intensity of Eg Raman vibrating mode of rutile phase increases and that of A1g Raman vibrating mode decreases apparently within the ablation crater after fs laser irradiation. With increasing of irradiation time, the Raman vibrating modes of anatase phase emerged. Rutile phase of TiO2 single crystal is partly transformed into anatase phase. The anatase phase content transformed from rutile phase increased to a constant with increasing of fs pulse laser irradiation time. The study indicates the more stable rutile phase is transformed into anatase phase by the high pressure produced by fs pulse laser irradiation.  相似文献   

13.
The synthesis of highly divided anatase TiO2 nanoparticles displaying 300 m2 g?1 surface area is achieved by following a two‐step synthetic process at room temperature. The particles exhibit a needle‐like morphology composed of self‐assembled 4 nm nanoparticles. The crystallization process from amorphous TiO2.1.6H2O to oriented aggregation of anatase TiO2 proceeds according to a slow solid dehydration process taking place in a large range of pH in deionized water (1 < pH < 12) or alternatively when including a low amount of NH4F(aq) in solution. Driven by their high surface area enhancing the chemical/electrochemical reactivity, it is reported in the case of the anatase TiO2 that a modification in the lithium insertion mechanism is no longer attributable to a two‐phase reaction between the two‐end members LiεTiO2 and Li0.5±αTiO2 when downsizing the particle size, but instead through a complete solid solution all along the composition range.  相似文献   

14.
Curcumin was coated on P25 TiO2 by using impregnation method from freshly prepared curcumin solution. The resulting products (Cur–TiO2–P25) was studied by several techniques such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier-transformed infrared spectroscopy, specific surface area by the Brunauer–Emmett–Teller method, and UV–Vis diffused reflectance spectroscopy. Experimental results revealed that impregnation of curcumin at 0.5, 3, 5, and 7 wt% did not affect the native phase of anatase and rutile in P25 significantly, however, it caused red shift of absorption onset in all curcumin-coated samples. The Cur–TiO2–P25 showed enhanced adsorption efficiency and increased photocatalytic activity under visible light with optimal result at 5 wt% curcumin content. Commercial anatase and rutile coated with curcumin (Cur–TiO2–an and Cur–TiO2–ru) were also prepared by the same method for the use in comparative studies of photodegradation of dyes. Cur–TiO2–an and Cur–TiO2–ru were also characterized with some selected equipment above but not as extensively as the Cur–TiO2–P25. Curcumin coating helped improve photocatalytic efficiencies of P25 and anatase but not for rutile. The mechanism of photocatalytic reaction was proposed that under visible light irradiation, curcumin molecule could act as dye sensitizing agent that injected electron into the conduction band of TiO2 leading to photodegradation of dyes.  相似文献   

15.
The synthesis of titanium dioxide (TiO2) nanoparticles with different percentage of anatase and rutile phases is investigated. The synthesis is performed by controlling the oxygen percentage in the gas mixture in the plasmachemical evaporation–condensation process employing a low-pressure arc discharge. In all our experiments, the pressure in the plasmachemical reactor and the average size of particles remain constant and are 60 Pa and 6 nm, respectively. The crystal structure of synthesized TiO2 is studied using X-ray diffraction; the morphology of the particles is analyzed employing transmission electron microscopy. Using X-ray phase analysis, it is established that the concentration of the TiO2 anatase phase decreases upon a decrease in the oxygen concentration in the gas mixture. It is shown that the TiO2 anatase phase is more efficient for photocatalytic decomposition of methylene blue than the rutile phase.  相似文献   

16.
Thermal decomposition of titanium tetraisopropoxide (TTIP) was carried out in varying reaction atmospheres: nitrogen, oxygen, and nitrogen plus water vapor. The effect of reaction atmosphere on the morphology, size, and crystalline structure of produced TiO2 particles was studied. The reactor used was similar to the microreactor proposed earlier by Park et al. (2001, J. Nanopart. Res., 3, 309–319), but for a modification in the precursor evaporator. The reactor temperature was varied from 300 to 700°C and the TTIP concentration in the evaporator from 1.0 to 7.0 mol%, holding the reactor residence time at 0.7 s. The primary-particle size was in the range 25–250 nm, varying with operating condition. The crystalline structure was amorphous in nitrogen, a mixture of rutile and anatase in nitrogen plus water vapor, and anatase in oxygen atmospheres. In nitrogen, agglomerates composed of very small particles whose individual boundaries are not clearly distinguished were produced. In oxygen, the particles composing an agglomerate became larger and were clearly spherical. As the atmosphere was varied to the nitrogen plus water vapor, the particle size increased further. The variation of primary particle size with reaction atmosphere was discussed in comparison with previous experimental data.  相似文献   

17.
The synthesis of nanoparticles of titanium dioxide (TiO2) with varying percentages of anatase and rutile phases is reported. This was achieved by controlling the operating pressure in a transferred-arc, direct current thermal plasma reactor in which titanium vapors are evaporated, and then exposed to ambient oxygen. The average particle size remained around 15 nm in each case. The crystalline structure of the as-synthesized nanoparticles of TiO2 was studied with X-ray diffraction analysis; whereas the particle morphology was investigated with the help of transmission electron microscopy. The precursor species responsible for the growth of these nanoparticles was studied with the help of optical emission spectroscopy. As inferred from the X-ray diffraction analysis, the relative abundance of anatase TiO2 was found to be dominant when synthesized at 760 Torr, and the same showed a decreasing trend with decreasing chamber pressure. The study also reveals that anatase TiO2 is a more effective photocatalytic agent in degrading methylene blue by comparison to its rutile phase.  相似文献   

18.
We present the results of a systematic study performed by micro‐Raman spectroscopy on pure anatase, pure rutile and mixed anatase–rutile TiO2 thin films, deposited by radio frequency magnetron sputtering on quartz substrates, with different thicknesses. The crystal structures of the as‐deposited films were unambiguously determined and a good crystalline homogeneity was revealed by a systematic mapping of the samples. In the mixed‐phase films, the relative amount of the two phases was monitored by a simple analysis of the components of the multi‐Lorentzian fitting curves. For the single‐phase films, the influence of the thickness and the effect of different thermal treatments, carried out to obtain series of thin films differing only for oxygen content, are discussed. The analysis of the scattered light has provided indication about the presence of an interface layer between the substrate and the film, which can play a role in driving the interesting magnetic properties exhibited by our samples, which are of potential usefulness for spintronics application. The results obtained from other techniques are briefly reported and discussed in relation to our systematic Raman characterization. This study points out how Raman investigation can provide suggestions toward the understanding of the complex physical phenomena leading to room‐temperature ferromagnetism in TiO2 thin films. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
This paper reports on the structural and optical properties of Co-doped TiO2 thin films grown onto (0001)Al2O3 substrates by non-reactive pulsed laser deposition (PLD) using argon as buffer gas. It is shown that by keeping constant the substrate temperature at as low as 310 °C and varying only the background gas pressure between 7 Pa and 70 Pa, it is possible to grow either epitaxial rutile or pure anatase thin films, as well as films with a mixture of both polymorphs. The optical band gaps of the films are red shifted in comparison with the values usually reported for undoped TiO2, which is consistent with n-type doping of the TiO2 matrix. Such band gap red shift brings the absorption edge of the Co-doped TiO2 films into the visible region, which might favour their photocatalytic activity. Furthermore, the band gap red shift depends on the films’ phase composition, increasing with the increase of the Urbach energy for increasing rutile content.  相似文献   

20.
曲艳东  孔祥清  李晓杰  闫鸿浩 《物理学报》2014,63(3):37301-037301
采用爆轰法制备了纳米TiO2混晶体,初步研究了不同煅烧温度(600℃和720℃)和不同煅烧时间(1 h,2 h,3.5 h和5 h)对其微结构和结构相变行为的影响,并应用热动力学理论讨论了从锐钛矿相到金红石相的结构相变过程和相变机理.研究表明:随着煅烧温度的升高和煅烧时间的增加,纳米TiO2的粒径逐渐增大,混晶中金红石相的含量逐渐提高.与常规方法制备的纳米TiO2不同的是,在相同煅烧温度和煅烧时间下金红石相的平均生长速率明显低于锐钛矿相.锐钛矿相完全相变为金红石的温度也明显低于常规方法报道的相变温度.该研究会对控制纳米TiO2晶体尺寸和批量合成提供一定的理论和实验指导.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号