首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sm2Si3O3N4 and Ln2Si2.5Al0.5O3.5N3.5 (Ln = Ce, Pr, Nd, Sm, Gd) – A Novel Synthetic Approach for the Preparation of N‐containing Melilites and X‐Ray Single‐Crystal Structure Determination The high‐temperature synthesis of nitridosilicates using an especially developed rf furnace was now transferred to the preparation of single‐crystalline oxonitridosilicates and oxonitridoaluminosilicates (sialons). Sm2Si3O3N4 was obtained by the reaction of SrCO3, Si(NH)2, and the respective lanthanoides, for Ln2Si2.5Al0.5O3.5N3.5 (Ln = Ce, Pr, Nd, Sm, Gd) additionally AlN was used. The compounds were obtained as coarsely crystalline products. Their crystal structures were refined on the basis of single‐crystal X‐ray diffraction data. Sm2Si3O3N4 (a = 768.89(4), c = 499.60(4) pm) and the isotypic sialons Ce2Si2.5Al0.5O3.5N3.5 (a = 779.20(3), c = 506.94(4) pm), Pr2Si2.5Al0.5O3.5N3.5 (a = 778.26(4), c = 508.56(5) pm), Nd2Si2.5Al0.5O3.5N3.5 (a = 776.15(4), c = 506.7(3) pm), Sm2Si2.5Al0.5O3.5N3.5 (a = 772.63(13), c = 502.80(9) pm), and Gd2Si2.5Al0.5O3.5N3.5 (a = 774.15(5), c = 506.46(4) pm) are new representatives of the N‐containing melilite structure type (space group P 4 21m (no. 113), Z = 2). For the structure analysis specific models were applied, which have been developed by Werner et al. on the basis of powder diffraction data.  相似文献   

2.
The New Layer‐Silicates Ba3Si6O9N4 and Eu3Si6O9N4 The new oxonitridosilicate Ba3Si6O9N4 has been synthesized in a radiofrequency furnace starting from BaCO3, amorphous SiO2 and Si3N4. The reaction temperature was at about 1370 °C. The structure of the colorless compound has been determined by single‐crystal X‐ray diffraction analysis (Ba3Si6O9N4, space group P3 (no. 143), a = 724.9(1) pm, c = 678.4(2) pm, V = 308.69(9)· 106 pm3, Z = 1, R1 = 0.0309, 1312 independent reflections, 68 refined parameters). The compound is built up of corner sharing SiO2N2 tetrahedra forming corrugated layers between which the Ba2+ ions are located. Substitution of barium by europium leads to the isotypic compound Eu3Si6O9N4. Because no single‐crystals could be obtained, a Rietveld refinement of the powder diffractogram was conducted for the structure refinement (Eu3Si6O9N4, space group P3 (no. 143), a = 711.49(1) pm, c = 656.64(2) pm, V = 287.866(8) ·106 pm3, Rp = 0.0379, RF2 = 0.0638). The 29Si MAS‐NMR spectrum of Ba3Si6O9N4 shows two resonances at ?64.1 and ?66.0 ppm confirming two different crystallographic Si sites.  相似文献   

3.
The isotypic nitridosilicates Li4Ca3Si2N6 and Li4Sr3Si2N6 were synthesized by reaction of strontium or calcium with Si(NH)2 and additional excess of Li3N in weld shut tantalum ampoules. The crystal structure, which has been solved by single‐crystal X‐ray diffraction (Li4Sr3Si2N6: C2/m, Z = 2, a = 6.1268(12), b = 9.6866(19), c = 6.2200(12) Å, β = 90.24(3)°, wR2 = 0.0903) is made up from isolated [Si2N6]10– ions and is isotypic to Li4Sr3Ge2N6. The bonding angels and distances within the edge‐sharing [Si2N6]10– double‐tetrahedra are strongly dependent on the lewis acidity of the counterions. This finding is discussed in relation to the compounds Ca5Si2N6 and Ba5Si2N6, which also exhibit isolated [Si2N6]10– ions.  相似文献   

4.
Nd3Si5AlON10 – Synthesis, Crystal Structure, and Properties of a Sialon Isotypic with La3Si6N11 Nd3Si5AlON10 was synthesized by the reaction of silicon diimide, aluminium nitride, aluminium oxide, and neodymium in a pure nitrogen atmosphere at 1650 °C using a radiofrequency furnace. The compound was obtained as a coarsely crystalline solid. According to the single‐crystal structure determination the title compound is isotypic with Ln3Si6N11 (Ln = La, Ce, Pr, Nd, Sm). Nd3Si5AlON10 (P4bm, a = 1007.8(1), c = 486.3(1) pm, Z = 2, R1 = 0.016, wR2 = 0.031) is built up by a three‐dimensional network structure of corner sharing SiON3 and (Si/Al)N4 tetrahedra (molar ratio Si : Al = 3 : 1). According to lattice energetic calculations using the MAPLE concept a differentiation of O and N seems to be reasonable. One of the two different sites for the tetrahedral centres is probably occupied by Si (distances: Si–O: 168.4(1), Si–N: 173.6(3)–176.0(4) pm) the second site by Si and Al with the molar ratio 3 : 1 (distances: (Si/Al)–N: 172.0(3)–176.6(2) pm). The Nd3+ ions are located in the voids of the (Si5AlON10)9– framework (distances: Nd–O: 261.07(8), Nd–N: 246.1(2)–286.6(2) pm).  相似文献   

5.
The First Iridiumphosphates Two polymorphs of iridium(III)‐metaphosphate Ir(PO3)3 and an iridium(IV)‐silicophosphate (Ir1?xSix)3[Si2O(PO4)6] (x ~ 0.5) were synthesized and their crystal structures determined from single‐crystal x‐ray data. Pale pink needles of triclinic Ir(PO3)3 (Ru(PO3)3 structure type, (No. 2), Z = 2, a = 6.9574(6) Å, b = 10.3628(9) Å, c = 5.0288(4) Å, α = 92.28(1)°, β = 92.80(1)°, γ = 98.60(1)°, 1574 independent reflections, 122 parameters, R1 = 0.028, wR2 = 0.061) were grown from a metaphosphoric acid melt. Pale pink prisms of C‐type Ir(PO3)3 (C‐Al(PO3)3 structure type, Cc (No. 14), Z = 12, a = 13.103(2) Å, b = 19.183(1) Å, c = 9.354(1) Å, β = 127.19(1)°, 4254 independent reflections, 354 parameter, R1 = 0.024, wR2 = 0.062) were obtained by chemical vapour transport (900 °C → 800 °C, addition of IrCl3·xH2O). Both metaphosphates are built of [IrIIIO6] octahedra and infinite chains. The latter have a translation period of three phosphate tetrahedra in the triclinic modification and six in the monoclinic. 1D and double‐quantum filtered 2D 31P‐MAS‐NMR spectra of C‐type Ir(PO3)3 confirm the chain structure and reveal a chemical shift range between ?4,8 and ?30,9 ppm for the 9 crystallographically independent, however chemically similar phosphate groups. Pale orange crystals of (Ir1?xSix)3[Si2O(PO4)6] (Si3[Si2O(PO4)6] structure type, (No. 148), Z = 3, a = 7.8819(8) Å, c = 24.476(4) Å, 1086 independent reflections, 56 parameters, R1 = 0.061, wR2 = 0.190) occurred in chemical vapour transport experiments aiming at the crystallization of C‐Ir(PO3)3. The crystal structure of the silicophosphate consists of isolated [IrIVO6] octahedra and [Si2O(PO4)6]12? heteropolyanions.  相似文献   

6.
The homeotypic compounds La16.32Ba1.82Sr7.86[Si60N92.32O3.68]O12 and La13.68Sr12.32[Si60N96]F6.32O5.68 were synthesized at high temperature (1600/1500 °C) in a radio‐frequency furnace. The crystal structures [I$\bar{4}$ m (no. 217), Z = 1, a = 13.3360(10)/13.3258(10) Å and V = 2371.8(5)/2366.4(5) Å3] were solved and refined on basis of single‐crystal X‐ray diffraction data and were corroborated by lattice‐energy calculations (Madelung part of lattice energy, MAPLE) powder X‐ray diffraction data and FTIR spectroscopy. They consist of a three‐dimensional network of allside corner sharing SiN4–xOx tetrahedra. The framework is characterized by double dreier rings. La16.32Ba1.82Sr7.86[Si60N92.32O3.68]O12 represents an oxonitridosilicate oxide and La13.68Sr12.32[Si60N96]F6.32O5.68 a nitridosilicate fluoride oxide, as the crystal structures contain non‐condensed (O[0]/O,F[0]) anions. The first compound is isotypic to Sr3Ln10Si18Al12O18N36 (Ln = Ce, Pr, Nd; Z = 2), whereas the latter describes a disordered model of the crystal structure, which is homeotypic to the mentioned SiAlONs.  相似文献   

7.
The new oxonitridosilicates Ba4?xCaxSi6N10O have been synthesized by means of high‐temperature synthesis in a radio‐frequency furnace, starting from calcium, barium, silicon diimide and amorphous silicon dioxide. The maximum reaction temperature was at about 1450 °C. The solid solution series Ba4?xCaxSi6N10O with a phase width 1.81 ≤ x ≤ 2.95 was obtained. The crystal structure of Ba1.8Ca2.2Si6N10O was determined by X‐ray single‐crystal structure determination (P213, no. 198), a = 1040.2(1) pm, Z = 4, wR2 = 0.082). It can be described as a highly condensed network of corner‐sharing SiN4 and SiON3 tetrahedra, the voids of which are occupied by the alkaline earth ions. The structure is isotypic with that of BaEu(Ba0.5Eu0.5)YbSi6N11. In the 29Si solid‐state MAS‐NMR spectrum two isotropic resonances at ?50.0 and ?53.6 ppm were observed.  相似文献   

8.
The new quinary fluoride‐rich rubidium scandium oxosilicate Rb3Sc2F5Si4O10 was obtained from mixtures of RbF, ScF3, Sc2O3 and SiO2 in sealed platinum ampoules after seventeen days at 700 °C. The colourless compound crystallises orthorhombically in space group Pnma with a = 962.13(5), b = 825.28(4), c = 1838.76(9) pm and Z = 4. For the oxosilicate partial structure, [SiO4]4– tetrahedra are connected in (001) by vertex‐sharing to form corrugated unbranched vierer single layers ${2}\atop{{\infty}}$ {[Si4O10]4–} (d(Si–O) = 158–165 pm, ∠(O–Si–O) = 103–114°, ∠(Si–O–Si) = 125–145°) containing six‐membered rings. Similar oxosilicate layers with 63‐net topology are well‐known for the mineral group of micas or in sanbornite Ba2Si4O10. Regarding other systems, identical tetrahedral layers can be found in the synthetic borophosphate Mg(H2O)2[B2P2O8(OH)2] · H2O. The Sc3+ cations are coordinated octahedrally by four F and two O2– anions. These cis‐[ScF4O2]5– octahedra (d(Sc–F) = 200–208 pm, d(Sc–O) = 202–205 pm) share one equatorial and two apical F anions with others to build up slightly corrugated ${1}\atop{{\infty}}$ {[Sc2F${t}\atop{2/1}$ F${v}\atop{6/2}$ O${t}\atop{4/1}$ ]7–} double chains along [010]. These are linked with the oxosilicate layers via two oxygen vertices to construct a three‐dimensional framework with cavities apt to host the three crystallographically independent Rb+ cations with coordination numbers of eleven, twelve and thirteen.  相似文献   

9.
The molecular structures of two N‐pentafluorophenylcyclosilazoxanes have been investigated. X‐Ray crystal structure determinations of (C6F5)3Me8Si4N3O ( 2 ) and (C6F5)2Me12Si6N2O4 ( 3 ) revealed the first structurally authenticated examples of eight‐membered Si4N3O and twelve‐membered Si6N2O4 ring systems.  相似文献   

10.
The high‐pressure behavior of Si2N2O is studied for pressures up to 100 GPa using density functional theory calculations. The investigation of a manifold of hypothetical polymorphs leads us to propose two dense phases of Si2N2O, succeeding the orthorhombic ambient‐pressure polymorph at higher pressures:a defect spinel structure at moderate pressures and a corundum‐type structure at very high pressures. Taking into account the formation of silicon oxynitride from silicon dioxide and silicon nitride and its pressure dependence, we propose five pressure regions of interest for Si2N2O within the pseudo‐binary phase diagram SiO2‐Si3N4: (i) stability of the orthorhombic ternary phase of Si2N2O up to 6 GPa, (ii) a phase assemblage of coesite, stishovite, and β‐Si3N4 between 6 and 11 GPa, (iii) a possible defect spinel modification of Si2N2O between 11 and 16 GPa, (iv) a phase assemblage of stishovite and γ‐Si3N4 above 40 GPa, and (v) a possible ternary Si2N2O phase with corundum‐type structure beyond 80 GPa. The existence of both ternary high‐pressure phases of Si2N2O, however, depends on the delicate influence of configurational entropy to the free energy of the solid state reaction.  相似文献   

11.
Li2CuII5(PO4)4 has been obtained by various reactions starting from copper or Cu2O. Crystallization was achieved using I2 as oxidant and mineralizer. The new orthophosphate crystallizes in space group P$\bar{1}$ , Z = 2, with a = 6.0502(3) Å, b = 9.2359(4) Å, c = 11.4317(5) Å, α = 75.584(2)°, β = 80.260(2)°, γ = 74.178(2)°, at 293 K. Its structure has been determined from X‐ray single‐crystal data and refined to R1 = 0.022{wR2 = 0.058 for 4633 unique reflections with Fo > 4σ (Fo)}. From magnetic measurements μeff = 1.51 μB/Cu and θP = –37.4 K have been determined. The Vis/NIR spectrum of aqua‐green Li2Cu5(PO4)4 shows a single broad band centered around $\bar{1}$ = 12000 cm–1. Magnetic behavior and spectrum are discussed within the angular overlap model.  相似文献   

12.
A new structure type of nitridosilicates with an interrupted framework has been identified for M7Si6N15 with M=La, Ce, and Pr. The materials have been synthesized in a radio‐frequency furnace at temperatures between 1550–1625 °C, starting from the respective metals, metal nitrides, and silicon diimide. The crystal structure of Ce7Si6N15 has been determined by using single‐crystal X‐ray diffraction. Besides ordered crystals 1 with a complicated triclinic superstructure and multiple twinning (P , no. 2; a=13.009(3), b=25.483(5), c=25.508(10) Å; α=117.35(3), β=99.59(3), γ=99.63(3)°; V=7114(2) Å3; Z=18; R1=0.0411), disordered crystals 2 with identical composition exhibiting a trigonal average structure (R , no. 148) have also been observed (a=43.420(6), c=6.506(2) Å; V=10 623(3) Å3; Z=27; R1=0.0309). Pr7Si6N15 ( 3 ) and La7Si6N15 ( 4 ) are isostructural with 1 as evidenced by twinned single‐crystal data for 3 (P , no. 2; a=12.966(3), b=25.449(10), c=25.459(10) Å; α=117.28(3), β=99.70(4), γ=99.60(4)°; V=7068(4) Å3; Z=18; R1=0.0526) and powder diffraction data for 4 (P , no. 2; a=13.109(9), b=25.606(18), c=25.609(18) Å; V=7223(12) Å3; Z=18; RP=0.0194; RF=0.0936). The crystal structure of M7Si6N15 (M=La, Ce, Pr) is built up exclusively of corner‐sharing tetrahedrons that appear as Q2‐, Q3‐, and Q4‐type tetrahedrons forming different ring sizes within a less condensed three‐dimensional network. Among the characteristic structural motifs are saw‐blade‐shaped 12‐rings and finite chains consisting of four corner‐sharing SiN4 tetrahedrons. High‐resolution transmission electron micrographs indicate both ordered and disordered crystallites. In the diffraction patterns of disordered rhombohedral crystals, diffuse maxima appear in reciprocal space at those positions in which sharp superstructure reflections are found in the case of the respective ordered crystallites. Magnetic susceptibility measurements of Ce7Si6N15 show paramagnetic behavior with an experimental magnetic moment of 2.29 μB per Ce, thereby corroborating the existence of Ce3+.  相似文献   

13.
14.
The lanthanide chloride ortho‐oxomolybdates LnCl[MoO4] (Ln = La, Ce, Pr) crystallize in the monoclinic space group P21/c(a = 1921–1906 pm, b ≈? 580 pm, c = 804–789 pm, β ≈? 90.04°, Z = 8).In the crystal structure, two crystallographically unique Ln3+ cations are present, both with the same coordination environment of four Cl and six O2– anions in the shape of a distorted tetracapped trigonal prism. The two distinguishable Cl anions both display a coordination sphere of three plus one Ln3+ cations, building up distorted tetrahedra. These are fused together via four common edges to form litharge‐analogous layers (e = edge‐connecting) parallel to the (100) plane. Two crystallographically different oxomolybdate units are also found in the structure, which can be best described as strandsof apically vertex‐shared [MoO5]4– trigonal bipyramids of the formula (v = vertex‐connecting, t = terminal) along [001]. These building blocks, the layers and the chains are alternately stacked along the a axis. The peculiarity of this structure is expressed by the position of the Mo6+ cations, which are not situated in the center of the bipyramids, but reside offset in their lower or upper trigonal pyramids (≈? tetrahedra). The Mo6+ cations with an x / a parameter between 0 and 0.5 can be found within the lower trigonal pyramids of those bipyramids (if viewed along the [001] direction), whereas those with 0.5 < x / a < 1 are located in the upper trigonal pyramid. Therefore, an alternating arrangement of the strands is observed. Due to the special constitution of the Ln3+ cations in distorted litharge‐analogous layers, a special magnetic effect was assumed, but in phase‐pure samples of e.g. CeCl[MoO4] mainly Curie–Weiss behavior could be detected.  相似文献   

15.
New Representatives of the Er6[Si11N20]O Structure Type. High‐Temperature Synthesis and Single‐Crystal Structure Refinement of Ln(6+x/3)[Si(11–y)AlyN(20+x–y)]O(1–x+y) with Ln = Nd, Er, Yb, Dy and 0 ≤ x ≤ 3, 0 ≤ y ≤ 3 According to the general formula Ln(6+x/3)[Si(11–y)AlyN(20+x–y)]O(1–x+y) (0 ≤ x ≤ 3, 0 ≤ y ≤ 3) four nitridosilicates, namely Er6[Si11N20]O, Yb6.081[Si11N20.234]O0.757, Dy0.33Sm6[Si11N20]N, and Nd7[Si8Al3N20]O were synthesized in a radiofrequency furnace at temperatures between 1300 and 1650 °C. The homeotypic crystal structures of all four compounds were determined by single‐crystal X‐ray diffraction. The nitridosilicates are trigonal with the following lattice constants: Er6[Si11N20]O: a = 978.8(4) pm, c = 1058.8(3) pm; Yb6.081[Si11N20.243]O0.757: a = 974.9(1) pm, c = 1055.7(2) pm; Dy0.33Sm6[Si11N20]N: a = 989.8(1) pm, c = 1078.7(1) pm; Nd7[Si8Al3N20]O: a = 1004.25(9) pm, c = 1095.03(12) pm. The crystal structures were solved and refined in the space group P31c with Z = 2. The compounds contain three‐dimensional networks built up by corner sharing SiN4 and AlN4 tetrahedra, respectively. The Ln3+ and the “isolated” O2– ions are situated in the voids of the structures. According to Ln(6+x/3)[Si(11–y)AlyN(20+x–y)]O(1–x+y) an extension of the Er6[Si11N20]O structure type has been found.  相似文献   

16.
(C2H10N2)[BPO4F2] — Strukturbeziehungen zwischen [BPO4F2]2— und [Si2O6]4— Colourless crystals of (C2H10N2)[BPO4F2] were prepared from mixture of ethylendiamine, H3BO3, BF3 · C2H5NH2, H3PO4 and HCl under mild hydrothermal conditions (220 °C). The crystal structure was determined by single crystal methods (triclinic, P1¯ (no. 2), a = 451.85(5) pm, b = 710.20(8) pm, c = 1210.2(2) pm, α = 86.08(1)°, β = 88.52(2)°, γ = 71.74(1)°, Z = 2) and contains infinite tetrahedral zweier‐single‐chains {[BPO4F2]2—} which are isoelectronic (48e) with the polyanions {[Si2O6]4—} of the pyroxene family.  相似文献   

17.
The reaction of Gd(ClO4)3·6H2O with 5‐(1H‐tetrazol‐5‐yl)isophthalic acid affords a 3D framework gadolinium coordination polymer, [Gd(C9H3N4O4)(H2O)3·2H2O]n ( 1 ). Its crystal structure belongs to a triclinic system, space group , with a = 7.909(2) Å; b = 8.448(2) Å; c = 10.994(2) Å; α = 102.65(3)°; β = 124.32(2)°; γ = 96.28(3)°; V = 704.5(2) Å3; Z = 2; R1 = 0.0245 for 3225 reflections with I >2σ(I), wR2 = 0.0556. Fluorescent analyses show that compound 1 exhibits purple fluorescence in the solid state at room temperature.  相似文献   

18.
Novel Inorganic Ring Systems. XXII. Novel Spirosilazanes of the Si5N4, Si5N5, Si5N4O, and Si7N8 Skeleton We succeeded in preparing the four novel spirosilazane skeletons E , F , G , and H of the composition given in the title. The permethylated compounds of the mentioned systems have been characterized in their chemical and physical properties. The conformation of their structure was possible by elemental analysis and by n.m.r., mass, i.r., and Raman spectra.  相似文献   

19.
Synthesis and Crystal Structures of Ln 2Al3Si2 and Ln 2AlSi2 ( Ln : Y, Tb–Lu) Eight new ternary aluminium silicides were prepared by heating mixtures of the elements and investigated by means of single‐crystal X‐ray methods. Tb2Al3Si2 (a = 10.197(2), b = 4.045(1), c = 6.614(2) Å, β = 101.11(2)°) and Dy2Al3Si2 (a = 10.144(6), b = 4.028(3), c = 6.580(6) Å, β = 101.04(6)°) crystallize in the Y2Al3Si2 type structure, which contains wavy layers of Al and Si atoms linked together by additional Al atoms and linear Si–Al–Si bonds. Through this there are channels along [010], which are filled by Tb and Dy atoms respectively. The silicides Ln2AlSi2 with Ln = Y (a = 8.663(2), b = 5.748(1), c = 4.050(1) Å), Ho (a = 8.578(2), b = 5.732(1), c = 4.022(1) Å), Er (a = 8.529(2), b = 5.719(2), c = 4.011(1) Å), Tm (a = 8.454(5), b = 5.737(2), c = 3.984(2) Å) and Lu (a = 8.416(2), b = 5.662(2), c = 4.001(1) Å) crystallize in the W2CoB2 type structure (Immm; Z = 2), whereas the structure of Yb2AlSi2 (a = 6.765(2), c = 4.226(1) Å; P4/mbm; Z = 2) corresponds to a ternary variant of the U3Si2 type structure. In all compounds the Si atoms are coordinated by trigonal prisms of metal atoms, which are connected by common faces so that Si2 pairs (dSi–Si: 2.37–2.42 Å) are formed.  相似文献   

20.
Nd4N2Se3 and Tb4N2Se3: Two non‐isotypical Lanthanide(III) Nitride Selenides The non‐isotypical nitride selenides M4N2Se3 of neodymium (Nd4N2Se3) and terbium (Tb4N2Se3) are formed by the reaction of the respective rare‐earth metal with sodium azide (NaN3), selenium and the corresponding rare‐earth tribromide (MBr3) at 900 °C in evacuated silica ampoules after seven days. Each of them crystallizes monoclinically in the space group C2/c with Z = 4 for Nd4N2Se3 (a = 1300.47(4), b = 1009.90(3), c = 643.33(2) pm, β = 90.039(2)°) and in the space group C2/m with Z = 2 for Tb4N2Se3 (a = 1333.56(5), b = 394.30(2), c = 1034.37(4) pm, β = 130.377(2)°), respectively. The crystal structures differ fundamentally in the linkage of the structure dominating N3‐ centred (M3+)4 tetrahedra. In Nd4N2Se3, the [NNd4] units are edge‐linked to bitetrahedra which are cross‐connected to [N(Nd1)(Nd2)]3+ layers via their remaining four corners, whereas the [NTb4] tetrahedra in Tb4N2Se3 share cis‐oriented edges to form strands [N(Tb1)(Tb2)]3+. Both structures contain two crystallographically different M3+ cations, that show coordination numbers of six and seven (Nd4N2Se3) or twice six (Tb4N2Se3), respectively, relative to the anions (N3‐ und Se2‐). Each of the two independent kinds of Se2‐ anions provide the three‐dimensional linkage as well as the charge balance. The particular axial ratio a/c and the monoclinic reflex angle offer two choices for fixing the unit cell of Tb4N2Se3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号