首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this work, hydrogen plasma etching of surface oxides was successfully accomplished on thin (~100 µm) planar n‐type Czochralski silicon wafers prior to intrinsic hydrogenated amorphous silicon [a‐Si:H(i)] deposition for heterojunction solar cells, using an industrial inductively coupled plasma‐enhanced chemical vapour deposition (ICPECVD) platform. The plasma etching process is intended as a dry alternative to the conventional wet‐chemical hydrofluoric acid (HF) dip for solar cell processing. After symmetrical deposition of an a‐Si:H(i) passivation layer, high effective carrier lifetimes of up to 3.7 ms are obtained, which are equivalent to effective surface recombination velocities of 1.3 cm s–1 and an implied open‐circuit voltage (Voc) of 741 mV. The passivation quality is excellent and comparable to other high quality a‐Si:H(i) passivation. High‐resolution transmission electron microscopy shows evidence of plasma‐silicon interactions and a sub‐nanometre interfacial layer. Using electron energy‐loss spectroscopy, this layer is further investigated and confirmed to be hydrogenated suboxide layers. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

2.
Silicon (Si) nanoparticles with average size of 13 nm and orange–red luminescence under UV absorption were synthesized using electrochemical etching of silicon wafers. A film of Si nanoparticles with thickness of 0.75 µm to 2.6 µm was coated on the glass (TiO2 side) of a dye‐sensitized solar cell (DSSC). The cell exhibited nearly 9% enhancement in power conversion efficiency (η) at film thickness of ~2.4 µm under solar irradiation of 100 mW/cm2 (AM 1.5) with improved fill factor and short‐circuit current density. This study revealed for the first time that the Si‐nanoparticle film converting UV into visible light and helping in homogeneous irradiation, can be utilized for improving the efficiency of the DSSCs. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
This work demonstrates that the combination of a wet‐chemically grown SiO2 tunnel oxide with a highly‐doped microcrystalline silicon carbide layer grown by hot‐wire chemical vapor deposition yields an excellent surface passivation for phosphorous‐doped crystalline silicon (c‐Si) wafers. We find effective minority carrier lifetimes of well above 6 ms by introducing this stack. We investigated its c‐Si surface passivation mechanism in a systematic study combined with the comparison to a phosphorous‐doped polycrystalline‐Si (pc‐Si)/SiO2 stack. In both cases, field effect passivation by the n‐doping of either the µc‐SiC:H or the pc‐Si is effective. Hydrogen passivation during µc‐SiC:H growth plays an important role for the µc‐SiC:H/SiO2 combination, whereas phosphorous in‐diffusion into the SiO2 and the c‐Si is operative for the surface passivation via the Pc‐Si/SiO2 stack. The high transparency and conductivity of the µc‐SiC:H layer, a low thermal budget and number of processes needed to form the stack, and the excellent c‐Si surface passivation quality are advantageous features of µc‐SiC:H/SiO2 that can be beneficial for c‐Si solar cells. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

4.
For microcrystalline silicon based p–i–n solar cells the effect of deposition conditions on the critical oxygen concentration was investigated. All solar cells were prepared by 13.56 MHz plasma‐enhanced chemical vapour deposition. The critical oxygen concentration defines the lowest oxygen concentration in the intrinsic absorber layer causing a deterioration of the solar cell performance. For intentional contamination of ~1.2–1.3 µm thick i‐layers, the oxygen was inserted by a controllable leak at the process gases supply line, i.e. by a gas pipe leak. For µc‐Si:H deposited at a discharge power of 0.53 W/cm2 we find a critical oxygen concentration of 1–2 × 1019 cm–3 in agreement with values commonly reported in literature. However, changing the deposition conditions, we find that the critical oxygen concentration in µc‐Si:H cells is not fixed. At reduced power of 0.20 W/cm2 a much higher value for the critical oxygen concentration of 1 × 1020 cm–3 is observed. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We used amorphous silicon oxide (a‐Si1–xOx:H) and microcrystalline silicon oxide (µc‐Si1–xOx:H) as buffer layer and p‐type emitter layer, respectively, in n‐type silicon hetero‐junction (SHJ) solar cells. We proposed to insert a thin (2 nm) intrinsic amorphous silicon (a‐Si:H) thin film between the thin (2.5 nm) a‐Si1–xOx:H buffer layer and the p‐layer to form a stack buffer layer of a‐Si:H/a‐Si1–xOx:H. As a result, a high open‐circuit voltage (VOC) and a high fill factor (FF) were obtained at the same time. Finally, a high efficiency of 19.0% (JSC = 33.46 mA/cm2, VOC = 738 mV, FF = 77.0%) was achieved on a 100 μm thick polished wafer using the stack buffer layer.

  相似文献   


6.
Imaging experiments at the European X‐ray Free Electron Laser (XFEL) require silicon pixel sensors with extraordinary performance specifications: doses of up to 1 GGy of 12 keV photons, up to 105 12 keV photons per 200 µm × 200 µm pixel arriving within less than 100 fs, and a time interval between XFEL pulses of 220 ns. To address these challenges, in particular the question of radiation damage, the properties of the SiO2 layer and of the Si–SiO2 interface, using MOS (metal‐oxide‐semiconductor) capacitors manufactured on high‐resistivity n‐type silicon irradiated to X‐ray doses between 10 kGy and 1 GGy, have been studied. Measurements of capacitance/conductance–voltage (C/G–V) at different frequencies, as well as of thermal dielectric relaxation current (TDRC), have been performed. The data can be described by a dose‐dependent oxide charge density and three dominant radiation‐induced interface states with Gaussian‐like energy distributions in the silicon band gap. It is found that the densities of the fixed oxide charges and of the three interface states increase up to dose values of approximately 10 MGy and then saturate or even decrease. The shapes and the frequency dependences of the C/G–V measurements can be quantitatively described by a simple model using the parameters extracted from the TDRC measurements.  相似文献   

7.
This Letter reports on the fabrication and characterization of silicon heterojunction solar cells with silicon oxide based buffer (intrinsic amorphous silicon oxide) and contact layers (doped microcrystalline silicon oxide) on flat p‐type wafers. The critical dependency of the cell performance on the front and rear buffer layer thickness reveals a trade‐off between the open circuit voltage Voc and the fill factor FF. At the optimum, the highest efficiency of 18.5% (active area = 0.67 cm2) was achieved with Voc = 664 mV, short circuit current Jsc = 35.7 mA/cm2 and FF = 78.0%. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Lambertian light trapping is a benchmark for efficient light trapping. In this Letter we experimentally quantify the degree of Lambertian light trapping in a macroporous silicon layer. The optical absorption of the effective (26.7 ± 5.5) µm thick sample with randomly arranged pores yields a photogeneration corresponding to a maximum current density of (40.8 ± 0.4) mA cm–2 and thus achieves a fraction of 0.985 ± 0.012 of the current density expected from a Lambertian light trapping scheme. The measured spectrum of the escape reflectance is well described with an analytic model assuming a complete randomization of the directions of light propagation. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Stacks of aluminum oxide and silicon nitride are frequently used in silicon photovoltaics. In this Letter, we demonstrate that hydrogenated aluminum nitride can be an alternative to this dual‐layer stack. Deposited on 1 Ω cm p‐type FZ silicon, very low effective surface recombination velocities of 8 cm/s could be reached after firing at 820 °C. This excellent passivation is traced back to a high density of fixed charges at the interface of approximately –1 × 1012 cm–2 and a very low interface defect density below 5 × 1010 eV–1 cm–2. Furthermore, spectral ellipsometry measurements reveal that these aluminum nitride layers have ideal optical properties for use as anti‐reflective coatings. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
This Letter demonstrates improved passivating contacts for silicon solar cells consisting of doped silicon films together with tunnelling dielectric layers. An improvement is demonstrated by replacing the commonly used silicon oxide interfacial layer with a silicon nitride/silicon oxide double interfacial layer. The paper describes the optimization of such contacts, including doping of a PECVD intrinsic a‐Si:H film by means of a thermal POCl3 diffusion process and an exploration of the effect of the refractive index of the SiNx. The n+ silicon passivating contact with SiNx /SiOx double layer achieves a better result than a single SiNx or SiOx layer, giving a recombination current parameter of ~7 fA/cm2 and a contact resistivity of ~0.005 Ω cm2, respectively. These self‐passivating electron‐selective contacts open the way to high efficiency silicon solar cells. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

11.
In the effort to increase the stable efficiency of thin film silicon micromorph solar cells, a silicon oxide based intermediate reflector (SOIR) layer is deposited in situ between the component cells of the tandem device. The effectiveness of the SOIR layer in increasing the photo‐carrier generation in the a‐Si:H top absorber is compared for p–i–n devices deposited on different rough, highly transparent, front ZnO layers. High haze and low doping level for the front ZnO strongly enhance the current density (Jsc) in the μc‐Si:H bottom cell whereas Jsc in the top cell is influenced by the angular distribution of the transmitted light and by the reflectivity of the SOIR related to different surface roughness. A total Jsc of 26.8 mA/cm2 and an initial conversion efficiency of 12.6% are achieved for 1.2 cm2 cells with top and bottom cell thicknesses of 300 nm and 3 μm, and without any anti‐reflective coating on the glass. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Microcrystalline silicon‐carbide (μc‐SiC:H) films were prepared using hot wire chemical vapor deposition at low substrate temperature. The μc‐SiC:H films were employed as window layers in microcrystalline silicon (μc‐Si:H) solar cells. The short‐circuit current density (JSC) in these n‐side illuminated n–i–p cells increases with increasing the deposition time tW of the μc‐SiC:H window layer from 5 min to 60 min. The enhanced JSC is attributed to both the high transparency and an anti‐reflection effect of the μc‐SiC:H window layer. Using these favourable optical properties of the μc‐SiC:H window layer in μc‐Si:H solar cells, a JSC value of 23.8 mA/cm2 and cell efficiencies above 8.0% were achieved with an absorber layer thickness of 1 μm and a Ag back reflector. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Raman spectra of microcrystalline silicon layers have been recorded in‐situ during growth. The spectra have been collected under realistic conditions for solar cell deposition. To enable these measurements an electrode with an optical feed through has been developed. By using a metallic grid to shield the feed through it is possible to achieve homogeneous deposition of µc‐Si:H at a sufficient optical transmission. In‐situ Raman measurements were carried out during the deposition of a layer with an intentionally introduced gradient in crystallinity that was seen in‐situ as well in reference measurements performed on the same layer ex‐situ. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Transparent conductive oxides (TCOs) have been widely used as electrodes for various solar cell structures. For heterojunction silicon wafer solar cells, the front TCO layer not only serves as a top electrode (by enhancing the lateral conductance of the underlying amorphous silicon film), but also as an antireflection coating. These requirements make it difficult to simultaneously achieve excellent conductance and transparency, and thus, only high‐quality indium tin oxide (ITO) has as yet found its way into industrial heterojunction silicon wafer solar cells. In this Letter, we present a cost‐effective hybrid structure consisting of a TCO layer and a silver nano‐particle mesh. This structure enables the separate optimization of the electrical and optical requirements. The silver nanoparticle mesh provides high electrical conductance, while the TCO material is optimized as an antireflection coating. Therefore, this structure allows the use of cost‐effective (and less conductive) TCO materials, such as aluminium‐doped zinc oxide. The performance of the hybrid structure is demonstrated to achieve a similar visible transmission (~86% in the 380–780 nm range) as an 80 nm thick ITO layer, but with 10 times better lateral conductance. The presented hybrid structure thus seems well suited for a variety of photovoltaic devices. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We demonstrate industrially feasible large‐area solar cells with passivated homogeneous emitter and rear achieving energy conversion efficiencies of up to 19.4% on 125 × 125 mm2 p‐type 2–3 Ω cm boron‐doped Czochralski silicon wafers. Front and rear metal contacts are fabricated by screen‐printing of silver and aluminum paste and firing in a conventional belt furnace. We implement two different dielectric rear surface passivation stacks: (i) a thermally grown silicon dioxide/silicon nitride stack and (ii) an atomic‐layer‐deposited aluminum oxide/silicon nitride stack. The dielectrics at the rear result in a decreased surface recombination velocity of Srear = 70 cm/s and 80 cm/s, and an increased internal IR reflectance of up to 91% corresponding to an improved Jsc of up to 38.9 mA/cm2 and Voc of up to 664 mV. We observe an increase in cell efficiency of 0.8% absolute for the cells compared to 18.6% efficient reference solar cells featuring a full‐area aluminum back surface field. To our knowledge, the energy conversion efficiency of 19.4% is the best value reported so far for large area screen‐printed solar cells. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Acid texture is difficult for diamond wire sawn (DWS) multicrystalline silicon (mc‐Si) wafer owing to the inhomogeneous distribution of damage layer on the surface. In this article, metal‐assisted chemical etching (MACE) has been selected for introducing a porous seeding layer to induce acid texturing etching. SEM results show that the oval pit structures coverage get obvious improvement even on the smooth areas. Owing to the further improved light absorption ability by second MACE and nanostructure rebuilding (NSR) process, nanostructured DWS mc‐Si solar cell has exhibited a conversion efficiency of 17.96%, which is 0.45% higher than that of DWS wafer with simple acid texture process. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

17.
In this letter we report the result of an a‐Si:H/nc‐Si:H tandem thin film silicon solar mini‐module fabricated on plastic foil containing intrinsic silicon layers made by hot‐wire CVD (efficiency 7.4%, monolithically series‐connected, aperture area 25 cm2). We used the Helianthos cell transfer process. The cells were first deposited on a temporary aluminum foil carrier, which allows the use of the optimal processing temperatures, and then transferred to a plastic foil. This letter reports the characteristics of the flexible solar cells obtained in this manner, and compares the results with those obtained on reference glass substrates. The research focus for implementation of the hot‐wire CVD technique for the roll‐to‐roll process is also discussed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
《X射线光谱测定》2005,34(1):56-58
A special method of specimen preparation is described aimed at achieving a small size of the order of 50 µm. The difficulty is especially great when preparing droplet residues from natural water on a silicon wafer as a supporting material for this experiment. We report the first promising results using an HF etching method to obtain a hydrophobic silicon surface. A specimen (residue) size of ~ 80 µm was obtained on the modified silicon surface, making wavelength‐dispersive total reflection x‐ray fluorescence (WD‐TXRF) analysis possible for a standard reference sample of natural water (TMDA 53.2). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
A new method of solid-state epitaxy of silicon carbide (SiC) on silicon (Si) is proposed theoretically and realized experimentally. Films of various polytypes of SiC on Si(111) grow through a chemical reaction (at T = 1100–1400°C) between single-crystal silicon and gaseous carbon oxide CO (at p = 10–300 Pa). Some silicon atoms transform into gaseous silicon oxide SiO and escape from the system, which brings about the formation of vacancies and pores in the silicon near the interface between the silicon and the silicon carbide. These pores provide significant relaxation of the elastic stresses caused by the lattice misfit between Si and SiC. X-ray diffraction, electron diffraction, and electron microscopy studies and luminescence analysis showed that the silicon carbide layers are epitaxial, homogeneous over the thickness, and can contain various polytypes and a mixture of them, depending on the growth conditions. The typical pore size is 1 to 5 μm at film thicknesses of ~20 to 100 nm. Thermodynamic nucleation theory is generalized to the case where a chemical reaction occurs. Kinetic and thermodynamic theories of this growth mechanism are constructed, and the time dependences of the number of new-phase nuclei, the concentrations of chemical components, and the film thickness are calculated. A model is proposed for relaxation of elastic stresses in a film favored by vacancies and pores in the substrate.  相似文献   

20.
XPAD3S is a single‐photon‐counting chip developed in collaboration by SOLEIL Synchrotron, the Institut Louis Néel and the Centre de Physique de Particules de Marseille. The circuit, designed in the 0.25 µm IBM technology, contains 9600 square pixels with 130 µm side giving a total size of 1 cm × 1.5 cm. The main features of each pixel are: single threshold adjustable from 4.5 keV up to 35 keV, 2 ms frame rate, 107 photons s?1 mm?2 maximum local count rate, and a 12‐bit internal counter with overflow allowing a full 27‐bit dynamic range to be reached. The XPAD3S was hybridized using the flip‐chip technology with both a 500 µm silicon sensor and a 700 µm CdTe sensor with Schottky contacts. Imaging performances of both detectors were evaluated using X‐rays from 6 keV up to 35 keV. The detective quantum efficiency at zero line‐pairs mm?1 for a silicon sensor follows the absorption law whereas for CdTe a strong deficit at low photon energy, produced by an inefficient entrance layer, is measured. The modulation transfer function was evaluated and it was shown that both detectors present an ideal modulation transfer function at 26 keV, limited only by the pixel size. The influence of the Cd and Te K‐edges of the CdTe sensor was measured and simulated, establishing that fluorescence photons reduce the contrast transfer at the Nyquist frequency from 60% to 40% which remains acceptable. The energy resolution was evaluated at 6% with silicon using 16 keV X‐rays, and 8% with CdTe using 35 keV X‐rays. A 7 cm × 12 cm XPAD3 imager, built with eight silicon modules (seven circuits per module) tiled together, was successfully used for X‐ray diffraction experiments. A first result recently obtained with a new 2 cm × 3 cm CdTe imager is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号