首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, organic–inorganic lead halides attracted widespread interest, mainly due to their impressive photoconversion properties and low‐cost solution processing. In this study, we employed small amplitude transient photovoltage and photocurrent spectroscopy to investigate charge transport and recombination properties of perovskite CH3NH3PbI3–xClx solar cell under realistic light harvesting conditions (<1 sun). Cell structure resembles outlay commonly found in organic photovoltaics, with perovskite absorber being sandwiched between two thin layers of organic polymers. Tested device displayed high power conversion efficiency (10.3%), good fill factor and negligible hysteresis effect. Fundamental device parameters were characterized at various open‐circuit voltages (Voc) by examination of small voltage and current perturbations created by the low intensity pulsed laser excitations. The obtained results exhibit long charge carrier lifetimes and fast charge transport over the full range of applied optical bias, as well as remarkable diffusion lengths exceeding 1 μm. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

2.
A new model to explain nongeminate recombination in organic bulk heterojunction solar cells is presented. We suggest that the annihilation of excitons on charge carriers at the interface between donor and acceptor phases competes with the bimolecular recombination of Coulombically bound electron–hole pairs. The exciton–polaron interaction gives visible contribution to the reduction of Langevin recombination. An analytical formula, which describes the reduction prefactor, has been derived. We demonstrate that exciton–charge carrier interactions cause an increase of the recombination order. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The benefits of gallium (Ga) grading on Cu(In,Ga)Se2 (CIGS) solar cell performance are demonstrated by comparing with ungraded CIGS cells. Using drive‐level capacitance profiling (DLCP) and admittance spectroscopy (AS) analyses, we show the influence of Ga grading on the spatial variation of deep defects, free‐carrier densities in the CIGS absorber, and their impact on the cell's open‐circuit voltage Voc. The parameter most constraining the cell's Voc is found to be the deep‐defect density close to the space charge region (SCR). In ungraded devices, high deep‐defect concentrations (4.2 × 1016cm–3) were observed near the SCR, offering a source for Shockley–Read–Hall recombination, reducing the cell's Voc. In graded devices, the deep‐defect densities near the SCR decreased by one order of magnitude (2.5 × 1015 cm–3) for back surface graded devices, and almost two orders of magnitude (8.6 × 1014 cm–3) for double surface graded devices, enhancing the cell's Voc. In compositionally graded devices, the free‐carrier density in the absorber's bulk decreased in tandem with the ratio of gallium to gallium plus indium ratio GGI = Ga/(Ga + In), increasing the activation energy, hindering the ionization of the defect states at room temperature and enhancing their role as recombination centers within the energy band. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

4.
This Letter discusses an important difference between positively charged SiO2 and negatively charged Al2O3 rear‐passivated p‐type Si solar cells: their illumination level dependency. For positively charged SiO2 rear‐passivated p‐type Si solar cells, a loss in short circuit current (JSC) and open circuit voltage (VOC) as a function of illumination level is mainly caused by parasitic shunting and a decrease in surface recombination, respectively. Hence, the relative loss in cell conversion efficiency, JSC, and VOC as a function of the illumination level for SiO2 compared to Al2O3 rear‐passivated p‐type Si solar cells has been measured and discussed. Subsequently, an exponential decay fit of the loss in cell efficiency is applied in order to estimate the difference in the energy output for both cell types in three different territories: Belgium (EU), Seattle and Austin (US). The observed trends in the difference in energy output between both cells, as a function of time of the year and region, are as expected and discussed. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Ion implantation offers new possibilities for silicon solar cell production, e.g. single side doping that can be structured in‐situ with shadow masks. While phosphorus implantations can easily be annealed at low temperature, the annealing of boron implantations is challenging. In this study, we use low energy implantations of boron (1 keV and 5 keV) with a projected range of 5.6 nm and 21.2 nm that form defects causing charge carrier recombination after a low temperature anneal (950 °C, 30 min). An ozone‐based wet chemical etching step is applied to remove this near surface damage. With increasing chemical etch‐back the electrical quality (i.e. emitter saturation current density, J0e) improves continuously. The calculated limit for J0e was reached with an abrasion of 35 nm for 1 keV and 85 nm for 5 keV implantations, showing that the relevant defects causing charge carrier recombination are located very close to the surface, corresponding to the as‐implanted profile depth. This emitter etch‐back allows for the fabrication of defect free boron doping profiles with good sheet resistance uniformity (standard deviation <2%). With the resulting characteristics (sheet resistance <100 Ω/sq, surface doping concentration >5 × 1019 cm–3, J0e < 30 fA/cm2), these boron profiles are well suited for silicon solar cells. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

6.
This Letter investigates the important parameters of illumination for control of hydrogen charge states in p‐type silicon solar cells. Through variations in the wavelength and intensity of illumination, evidence is provided for the importance of the neutral charge state of interstitial hydrogen, H0, for the passivation of defects in upgraded metallurgical grade (UMG) silicon. It is shown that through this approach minority carrier lifetimes may be achieved in excess of those realised through previous techniques, resulting in open‐circuit voltages (iVOC) over 710 mV. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

7.
The three thermal rate equations were built newly up at both ends and at the junction of a pn diode, in order to derive analytically the temperature difference ΔT (between a junction and both ends) and the internal cooling efficiency η defined newly for a homojunction diode. The maxima ΔT and η of a diode were derived analytically as a function of V j within the short-length approximation and calculated numerically as a function of V j or V bi, where V j is a voltage across the junction and V bi is a built-in voltage at the junction. As a result, ΔT increases abruptly with an increase of V j below V j=0.050 V or of V bi below V bi=0.10 V, while above their values, it increases slowly with an increase of V j or V bi to saturate a certain value. For example, ΔT was estimated as 14.6 K for Hg0.8Cd0.2Te diode with V bi=0.36 V. η has a local maximum of 63% at V j≈0.01 V or at V bi≈0.03 V, while above their respective values, it decreases abruptly with an increase of V j or V bi and falls to 4.4% at V bi=0.80 V which is equivalent to that of a diode emitting a laser for fiber optical communication. However, the greater enhancements in ΔT and η of a diode are required to apply the internal cooling system to a laser-emitting diode which needs the exact control of temperature. These results should be useful for the application of the internal cooling system to the double heterojunction diode used in the optical communication.  相似文献   

8.
In solar cells fabricated from boron‐doped Cz‐Si wafers minority and majority carrier traps were detected by deep level transient spectroscopy (DLTS) after so‐called “light‐induced degradation” (LID). The DLTS signals were detected from mesa‐diodes with the full structure of the solar cells preserved. Preliminary results indicate metastable traps with energy levels positioned at EV + 0.37 eV and EC – 0.41 eV and apparent carrier capture cross‐sections in the 10–17–10–18 cm2 range. The concentration of the traps was in the range of 1012–1013 cm–3. The traps were eliminated by annealing of the mesa‐diodes at 200 °C. No traps were detected in Ga‐doped solar cells after the LID procedure or below the light protected bus bar locations in B‐doped cells. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

9.
Single material organic solar cells become an interesting area of research to overcome the challenges with efficient charge separation efficiencies in conventional organic solar cells. In this article, we have synthesized nonmetallated and metallated porphyrin‐fullerene dyad materials (H2P‐C60 and ZnP‐C60, respectively) with simple structure, comprehensively studied their charge transfer mechanism, and established a proof of concept that nonmetallated porphyrin‐fullerene dyads are better candidates to be used in organic solar cells compared with metallated dyads. Absorption and electrochemical analysis revealed the ground state electronic interactions between donor‐acceptor moieties in both types of dyads. Driving force (?ΔGoET) for intramolecular electron transfer process was calculated by first oxidation and reduction potentials of dyads. The excited state electronic interactions were characterized by time‐resolved fluorescence and pump‐probe transient absorption experiments. Strong fluorescence quenching of porphyrin along with reduced lifetimes in dyads due to deactivation of singlet excited states by photoinduced charge transfer process between porphyrin/Zn‐porphyrin core and fullerene in different polarity solvents was observed. Transient absorption spectroscopy was also applied to identify the transient spectral features, ie, cationic (H2P+/ZnP+) and anionic (C60?) radicals formed because of the charge separation in both types of dyads. Finally, organic solar cell device was also fabricated using the dyads. We obtained higher Voc, Jsc, and fill factor in single material organic solar cell using H2P‐C60 compared to previous reports.  相似文献   

10.
A charge trapping memory with 2 nm silicon nanoparticles (Si NPs) is demonstrated. A zinc oxide (ZnO) active layer is deposited by atomic layer deposition (ALD), preceded by Al2O3 which acts as the gate, blocking and tunneling oxide. Spin coating technique is used to deposit Si NPs across the sample between Al2O3 steps. The Si nanoparticle memory exhibits a threshold voltage (Vt) shift of 2.9 V at a negative programming voltage of –10 V indicating that holes are emitted from channel to charge trapping layer. The negligible measured Vt shift without the nanoparticles and the good re‐ tention of charges (>10 years) with Si NPs confirm that the Si NPs act as deep energy states within the bandgap of the Al2O3 layer. In order to determine the mechanism for hole emission, we study the effect of the electric field across the tunnel oxide on the magnitude and trend of the Vt shift. The Vt shift is only achieved at electric fields above 1 MV/cm. This high field indicates that tunneling is the main mechanism. More specifically, phonon‐assisted tunneling (PAT) dominates at electric fields between 1.2 MV/cm < E < 2.1 MV/cm, while Fowler–Nordheim tunneling leads at higher fields (E > 2.1 MV/cm). (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The present study investigates the electrical properties of transition metal oxide (TMO) emitters in dopant‐free n‐Si back contact solar cells by comparing the properties of solar cells employing three TMOs (WOx, MoOx and V2Ox) with varying electrical properties acting as p‐type contacts. The TMOs are found to induce large band bending in n‐Si, which reduces the injection level dependent interfacial recombination speed Seff and contact resistivity ρc. Among the TMO/n‐Si contacts considered, the V2Ox/n‐Si contact achieves the lowest Seff of 138 cm/s and ρc of 0.034 Ω cm2, providing the significant advantages over heavily doped a‐Si:H(p)/n‐Si contacts. The best device performance was achieved by the V2Ox/n‐Si solar cell, demonstrating an efficiency of 16.59% and an open‐circuit voltage of 610 mV relative to solar cells based on MoOx/n‐Si (15.09%, 594 mV) and WOx/n‐Si (12.44%, 539 mV). Furthermore, the present work is the first to employ WOx, V2Ox and Cs2CO3 in back contact solar cells. The fabrication process employed offers great potential for the mass production of back contact solar cells owing to simple, metal mask patterning with high alignment quality and dopant‐free steps conducted at a lower temperature.  相似文献   

12.
An ultrathin Mg(OH)2 layer was solution‐deposited onto the ZnO nanowires to solve the problem of interfacial charge recombination, caused by the increase of interfacial area in bulk heterojunction (BHJ) PbS colloidal quantum dot solar cells (CQDSCs). This Mg(OH)2 interlayer efficiently passivated the surface defects of ZnO nanowires and provided tunnel barrier at ZnO/PbS interface. As a result, the charge recombination at ZnO/PbS interface was largely suppressed, proved by the significantly elongated electron lifetime and the increased open‐circuit voltage of the Mg(OH)2‐involved BHJ CQDSCs. Careful thickness optimization of Mg(OH)2 interlayer finally brought a ~33% increase in Voc and ~25% improvement in power conversion efficiency.  相似文献   

13.
Gallium arsenide (GaAs) cells have been in the race with silicon single‐crystal cells for the highest efficiency photovoltaic devices. The annealed, irradiated Schottky barrier (SB) solar cells were characterised using micro‐Raman spectroscopy at three different regions: namely, at the (1) ohmic contact region, (2) unirradiated region and (3) irradiated region. We also present a micro‐Raman study of the damage process in annealed GaAs SB solar cells bombarded by high‐energy ions. A Gaussian line shape was fitted to the Raman spectra of the longitudinal optical phonon A1(LO), and parameters such as intensity, full width at half maximum (FWHM) and the area under the peak were obtained for the different annealing temperatures. Biaxial stress (σ), carrier concentration (n), depletion length (Ld), dislocation velocity (ν) and life time of the first‐order optical phonon (τ) of the A1(LO) mode of the irradiated region of the samples annealed at different temperatures were calculated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
This paper reports our findings on the boron and phosphorus doping of very thin amorphous silicon layers by low energy ion implantation. These doped layers are implemented into a so‐called tunnel oxide passivated contact structure for Si solar cells. They act as carrier‐selective contacts and, thereby, lead to a significant reduction of the cell's recombination current. In this paper we address the influence of ion energy and ion dose in conjunction with the obligatory high‐temperature anneal needed for the realization of the passivation quality of the carrier‐selective contacts. The good results on the phosphorus‐doped (implied Voc = 725 mV) and boron‐doped passivated contacts (iVoc = 694 mV) open a promising route to a simplified interdigitated back contact (IBC) solar cell featuring passivated contacts. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

15.
We present an experimental study combined with computer simulations on the effects of wide band‐gap absorber and window layers on the open‐circuit voltage (Voc) in single junction thin film silicon solar cells. The quantity ΔEp, taking as the difference between the band gap and the activation energy in ?p? layer, is treated as a measure of the p‐layer properties and shows a linear relation with Voc over a range of 100 mV with a positive slope of around 430 mV/eV. Two limiting mechanisms of Voc are identified: the built‐in potential at lower ΔEp and the band gap of the absorber layer at higher ΔEp. The results of the experimental findings are confirmed by computer simulations. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

16.
We present back‐contacted amorphous/crystalline silicon heterojunction solar cells (IBC‐SHJ) on n‐type substrates with fill factors exceeding 78% and high current densities, the latter enabled by a SiNx /SiO2 passivated phosphorus‐diffused front surface field. Voc calculations based on carrier lifetime data of reference samples indicate that for the IBC architecture and the given amorphous silicon layer qualities an emitter buffer layer is crucial to reach a high Voc, as known for both‐side contacted silicon heterojunction solar cells. A back surface field buffer layer has a minor influence. We observe a boost in solar cell Voc of 40 mV and a simultaneous fill factor reduction introducing the buffer layer. The aperture‐area efficiency increases from 19.8 ± 0.4% to 20.2 ± 0.4%. Both, efficiencies and fill factors constitute a significant improvement over previously reported values. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The N-channel metal oxide semiconductor field effect transistors (MOSFETs) were exposed to 95 MeV oxygen ions in the fluence range of 5 × 1010 to 5 × 1013 ions/cm2. The influence of ion irradiation on threshold voltage (VTH), linear drain current (IDLin), leakage current (IL), drain conductance (gD), transconductance (gm), mobility (μ) and drain saturation current (IDSat) of MOSFETs was studied systematically for various fluence. The VTH of the irradiated MOSFET was found to decrease significantly after irradiation. The interface (Nit) and oxide trapped charge (Not) were estimated from the subthreshold measurements and were found to increase after irradiation. The densities of oxide-trapped (ΔNit) charge in irradiated MOSFETs were found to be higher than those of the interface trapped charge (ΔNot). The IDLin and IDSat of MOSFETs were also found to decrease significantly after irradiation. Studies on effects of 95 MeV oxygen ion irradiation on gm, gD and μ show a degradation varying from 70 to 75% after irradiation. The mobility degradation coefficients for Nitit) and Notit) were estimated. The results of these studies are presented and discussed.  相似文献   

18.
In this work, hydrogen plasma etching of surface oxides was successfully accomplished on thin (~100 µm) planar n‐type Czochralski silicon wafers prior to intrinsic hydrogenated amorphous silicon [a‐Si:H(i)] deposition for heterojunction solar cells, using an industrial inductively coupled plasma‐enhanced chemical vapour deposition (ICPECVD) platform. The plasma etching process is intended as a dry alternative to the conventional wet‐chemical hydrofluoric acid (HF) dip for solar cell processing. After symmetrical deposition of an a‐Si:H(i) passivation layer, high effective carrier lifetimes of up to 3.7 ms are obtained, which are equivalent to effective surface recombination velocities of 1.3 cm s–1 and an implied open‐circuit voltage (Voc) of 741 mV. The passivation quality is excellent and comparable to other high quality a‐Si:H(i) passivation. High‐resolution transmission electron microscopy shows evidence of plasma‐silicon interactions and a sub‐nanometre interfacial layer. Using electron energy‐loss spectroscopy, this layer is further investigated and confirmed to be hydrogenated suboxide layers. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

19.
An organic–inorganic hybrid solar cell based on CdSe quantum dots (QDs) and poly(3-hexylthiophene) (P3HT) was fabricated. Its temperature-dependent photovoltaic behaviors, such as IV characteristic curves and open circuit voltage (Voc) transient response, were measured. The photovoltaic behavior of this hybrid thin film device was similar with that of organic thin film solar cells, according to analysis results based on the equivalent circuit method. The exact carrier lifetime was remarkably different between under low-temperature region and under temperature above 197 K.  相似文献   

20.
Alkali‐free Cu(In,Ga)Se2(CIGS) absorbers grown on Mo‐coated alumina (Al2O3) substrates were doped with potassium (K) after CIGS growth by a potassium fluoride (KF) post‐deposition treatment (PDT). The addition of K to the absorber leads to a strong increase in cell efficiency from 10.0% for the K‐free cell to 14.2% for the K‐doped cell, mainly driven by an increase in the open‐circuit voltage Voc and the fill factor FF, and to an increase in the net charge carrier density. Hence K doping by KF‐PDT is comparable to doping with Na.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号