首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
UV absorption spectra of the Lindqvist polyoxometalate [W6O19]2? were predicted by relativistic time‐dependent density functional theory with several combinations of density functional and basis set. Hybrid functionals with frozen‐core Slater basis sets were found to provide the best agreement with experiment while keeping reasonable computational demand. The approach was extended to [W10O32]4? and [PW12O40]3?, suggesting that it can be applied to the polyoxometalates family. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

2.
A computational study of diatomic NiAl is reported. Molecular properties evaluated include the equilibrium bond length (re), equilibrium stretching frequency (ωe), doublet‐quartet energy splitting, and nickel‐aluminum bond strength. Several interesting conclusions have resulted from this research. First, convergence in calculated properties is smoother with recently reported correlation consistent basis sets than earlier basis sets for Ni and Al. Second, with the exception of bond strength, basis set limit properties extrapolated using correlation basis sets are in agreement with reported data. Third, this research suggests that caution may be needed with regard to the use of DFT for developing interatomic potentials for larger scale simulations. For example, B97‐1 showed better agreement with reported re for 2NiAl than B3LYP. However, the situation was reversed for the calculation of ωe. With respect to bond strength, the situation is unclear due to the scatter among experiment and calculations. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

3.
The title molecule, 3‐{[4‐(3‐methyl‐3‐phenyl‐cyclobutyl)‐thiazol‐2‐yl]‐hydrazono}‐1,3‐dihydro‐indol‐2‐one (C22H20N4O1S1), was prepared and characterized by 1H NMR, 13C NMR, IR, UV–visible, and single‐crystal X‐ray diffraction. The compound crystallizes in the monoclinic space group P21 with a = 8.3401(5), b = 5.6976(3), c = 20.8155(14) Å, and β = 95.144(5)°. Molecular geometry from X‐ray experiment and vibrational frequencies of the title compound in the ground state has been calculated using the Hartree–Fock with 6‐31G(d, p) and density functional method (B3LYP) with 6‐31G(d, p) and 6‐311G(d, p) basis sets, and compared with the experimental data. The calculated results show that optimized geometries can well reproduce the crystal structural parameters, and the theoretical vibrational frequencies values show good agreement with experimental data. Density functional theory calculations of the title compound and thermodynamic properties were performed at B3LYP/6‐31G(d, p) level of theory. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

4.
The title molecule, 2‐(4‐chlorophenyl)‐1‐methyl‐1H‐benzo[d]imidazole (C14H11ClN2), was prepared and characterized by 1H NMR, 13C NMR, IR, and single‐crystal X‐ray diffraction. The molecular geometry, vibrational frequencies, and gauge including atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the title compound in the ground state have been calculated by using the Hartree‐Fock (HF) and density functional theory (DFT/B3LYP) method with 6‐31G(d) basis sets, and compared with the experimental data. The calculated results show that the optimized geometries can well reproduce the crystal structural parameters, and the theoretical vibrational frequencies and GIAO 1H and 13C NMR chemical shifts show good agreement with experimental values. The energetic behavior of the title compound in solvent media has been examined using B3LYP method with the 6‐31G(d) basis set by applying the Onsager and the polarizable continuum model (PCM). Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis, and nonlinear optical (NLO) properties of the title compound were investigated by theoretical calculations. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

5.
HeIα excited photoelectron spectra of pentatetraene and the inferred ionization energies are reported. The first band has a characteristic Franck-Condon envelope similar to the first photoelectron bands of allene and butatriene. The four bands found below 16 eV ionization energy have been assigned to the X?2E, Ã2E, B?2E and C?2B2 states of the radical cation of pentatetraene by comparison with STO-3G and SPINDO calculations on the cumulene series. The correlation scheme includes the 2s shell ionization energies of ethylene, allene and butatriene. The π-orbital ionization trends of the cumulenes are discussed in the framework of localized orbitals calculated with the STO-3G basis set.  相似文献   

6.
We systematically investigate the interactions and magnetic properties of a series of 3d transition‐metal (TM; Sc–Ni) atoms adsorbed on perfect graphene (G6), and on defective graphene with a single pentagon (G5), a single heptagon (G7), or a pentagon–heptagon pair (G57) by means of spin‐polarized density functional calculations. The TM atoms tend to adsorb at hollow sites of the perfect and defective graphene, except for G6Cr, G5Cr, and G5Ni. The binding energies of TMs on defective graphene are remarkably enhanced and show a V‐shape, with GNCr and GNMn having the lowest binding energies. Furthermore, complicated element‐ and defect‐dependent magnetic behavior is observed in GNTM. Particularly, the magnetic moments of GNTM linearly increase by about 1 μB and follow a hierarchy of G7TM<G57TM<G5TM as the TM varies from Sc to Mn, and the magnetic moments begin to decrease afterward; by choosing different types of defects, the magnetic moments can be tuned over a broad range, for example, from 3 to 6 μB for GNCr. The intriguing element‐ and defect‐dependent magnetic behavior is further understood from electron‐ and back‐donation mechanisms.  相似文献   

7.
The title molecule, N‐[4‐(3‐Methyl‐3‐phenyl‐cyclobutyl)‐thiazol‐2‐yl]‐N′‐pyridin‐3ylmethylene‐ hydrazine (C20 H20 N4 S1), was characterized by 1H‐NMR, 13C‐NMR, IR, UV‐visible, and X‐ray determination. In addition to the molecular geometry from X‐ray experiment, the molecular geometry, vibrational frequencies and gauge including atomic orbital 1H‐ and 13C‐NMR chemical shift values of the title compound in the ground state have been calculated using the Hartree‐Fock and density functional method (B3LYP) with 6‐31G(d, p) basis set. The calculated results show that optimized geometries can well reproduce the crystal structural parameters. By using time‐dependent density functional theory method, electronic absorption spectrum of the title compound has been predicted. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
The equilibrium association free enthalpies ΔGa for typical supramolecular complexes in solution are calculated by ab initio quantum chemical methods. Ten neutral and three positively charged complexes with experimental ΔGa values in the range 0 to ?21 kcal mol?1 (on average ?6 kcal mol?1) are investigated. The theoretical approach employs a (nondynamic) single‐structure model, but computes the various energy terms accurately without any special empirical adjustments. Dispersion corrected density functional theory (DFT‐D3) with extended basis sets (triple‐ζ and quadruple‐ζ quality) is used to determine structures and gas‐phase interaction energies (ΔE), the COSMO‐RS continuum solvation model (based on DFT data) provides solvation free enthalpies and the remaining ro‐vibrational enthalpic/entropic contributions are obtained from harmonic frequency calculations. Low‐lying vibrational modes are treated by a free‐rotor approximation. The accurate account of London dispersion interactions is mandatory with contributions in the range ?5 to ?60 kcal mol?1 (up to 200 % of ΔE). Inclusion of three‐body dispersion effects improves the results considerably. A semilocal (TPSS) and a hybrid density functional (PW6B95) have been tested. Although the ΔGa values result as a sum of individually large terms with opposite sign (ΔE vs. solvation and entropy change), the approach provides unprecedented accuracy for ΔGa values with errors of only 2 kcal mol?1 on average. Relative affinities for different guests inside the same host are always obtained correctly. The procedure is suggested as a predictive tool in supramolecular chemistry and can be applied routinely to semirigid systems with 300–400 atoms. The various contributions to binding and enthalpy–entropy compensations are discussed.  相似文献   

9.
Two series of aliphatic hydrocarbon‐based G1–G3 dendritic 2‐ureido‐4‐pyrimidinones (UPy) ( S‐Gn )2 and ( L‐Gn )2, differing from one another by the distance between the branching juncture to the urea end, were prepared and characterized. These hydrocarbon dendrons were also appended to a p‐aminonitrobenzene solvatochromic chromophore in order to probe their microenvironment polarity. While positive solvatochromism was observed which indicated the chromophore was solvent accessible, there was no significant difference between the microenvironment polarities on going from the G1 to the G3 dendrons. The self‐assembling behavior and tautomeric preference of the dendritic UPy derviatives were examined by 1H NMR spectroscopy. The dimerization constants (Kdim*) of the DDAA tautomers were unchanged at 107 M ?1 in CDCl3 at both 25 and 50 °C, which were comparable to those of UPy compounds bearing other nonpolar substitutents. Furthermore, the lower limits on the Kdim* of the DADA tautomeric forms of the ( S‐Gn )2 and ( L‐Gn )2 series were determined to be 106 and 105 M ?1 in CDCl3, respectively. It was found that a closer proximity of the dendron branching juncture to the UPy unit could lead to a destabilization effect on the dimeric states. Hence, the ( L‐Gn )2 dimers are more stable than those of ( S‐Gn )2 in the DDAA form, but the latter are more stable than the former in the tautomeric DADA state. This study showed that both the highly nonpolar microenvironment and the proximity of the dendritic branching juncture to the UPy motif could alter the strength and profile of the hydrogen bond‐mediated self‐assembling process.  相似文献   

10.
We have developed and implemented pseudospectral time‐dependent density‐functional theory (TDDFT) in the quantum mechanics package Jaguar to calculate restricted singlet and restricted triplet, as well as unrestricted excitation energies with either full linear response (FLR) or the Tamm–Dancoff approximation (TDA) with the pseudospectral length scales, pseudospectral atomic corrections, and pseudospectral multigrid strategy included in the implementations to improve the chemical accuracy and to speed the pseudospectral calculations. The calculations based on pseudospectral time‐dependent density‐functional theory with full linear response (PS‐FLR‐TDDFT) and within the Tamm–Dancoff approximation (PS‐TDA‐TDDFT) for G2 set molecules using B3LYP/6‐31G** show mean and maximum absolute deviations of 0.0015 eV and 0.0081 eV, 0.0007 eV and 0.0064 eV, 0.0004 eV and 0.0022 eV for restricted singlet excitation energies, restricted triplet excitation energies, and unrestricted excitation energies, respectively; compared with the results calculated from the conventional spectral method. The application of PS‐FLR‐TDDFT to OLED molecules and organic dyes, as well as the comparisons for results calculated from PS‐FLR‐TDDFT and best estimations demonstrate that the accuracy of both PS‐FLR‐TDDFT and PS‐TDA‐TDDFT. Calculations for a set of medium‐sized molecules, including Cn fullerenes and nanotubes, using the B3LYP functional and 6‐31G** basis set show PS‐TDA‐TDDFT provides 19‐ to 34‐fold speedups for Cn fullerenes with 450–1470 basis functions, 11‐ to 32‐fold speedups for nanotubes with 660–3180 basis functions, and 9‐ to 16‐fold speedups for organic molecules with 540–1340 basis functions compared to fully analytic calculations without sacrificing chemical accuracy. The calculations on a set of larger molecules, including the antibiotic drug Ramoplanin, the 46‐residue crambin protein, fullerenes up to C540 and nanotubes up to 14×(6,6), using the B3LYP functional and 6‐31G** basis set with up to 8100 basis functions show that PS‐FLR‐TDDFT CPU time scales as N2.05 with the number of basis functions. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
The rheological behavior of polyaniline‐(±champhor‐10‐sulfonic acid)0.5m‐cresol [PANI‐CSA0.5m‐cresol] gel nanocomposites (GNCs) with Na‐montmorillonite clay (intercalated tactoids) is studied. The shear viscosity exhibits Newtonian behavior for low shear rate (<2 × 10?4 s?1) and power law variation for higher shear rate. The zero shear viscosity (η0) and the characteristic time (λ) increase but the power law index (n) decrease with increase in clay concentration. In the GNCs storage modulus (G′) and loss modulus (G″) are invariant with frequency in contrast to the pure gel. The G′ and G′ exhibit the gel behavior of the GNCs up to 105 °C in contrast to the melting for the pure gel at 75.7 °C. The percent increase of G′ of GNCs increases dramatically (619% in GNC‐5) with increasing clay concentration. The conductivity values are 10.5, 5.65, 5.51, and 4.75 S/cm for pure gel, GNC‐1, GNC‐3, and GNC‐5, respectively, promising their possible use in soft sensing devices. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 28–40, 2008  相似文献   

12.
A reverse‐binding‐selectivity between monovalent and divalent cations was observed for two different self‐assembly G16‐hexadecamer and G8‐octamer systems. The dissociation constant between G4‐quadruplex and monomer was calculated via VT‐1H NMR experiments. Quantitative energy profiles revealed entropy as the key factor for the weaker binding toward Ba2+ compared with K+ in the G8‐octamer system despite stronger ion‐dipole interactions. This study is the first direct comparison of the G4‐quartet binding affinity between mono and divalent cations and will benefit future applications of G‐quadruplex‐related research. Further competition experiments between the G8‐octamer and 18‐crown‐6 with K+ demonstrated the potential of this G8 system as a new potassium receptor.  相似文献   

13.
A series of tri‐ and diorganotin(IV) compounds containing potentially chelating S,N‐ligand(s) (LSN, where LSN is 6‐phenylpyridazine‐3‐thiolate) were prepared and structurally characterized by multinuclear NMR spectroscopy. X‐ray diffraction techniques were used for determination of the structure of compounds containing one [(LSN)Ph2SnCl], two [(n‐Bu)2Sn(LSN)2] and the combination of two LSN and one LCN [(LCN)(n‐Bu)Sn(LSN)2] (where LCN is {2‐[(CH3)2NCH2]C6H4}‐) ligands. The coordination number of the tin atom varies from five to seven and is dependent on the number of chelating ligands present. The formation of the five‐membered azastanna heterocycle is favored over the formation of four‐membered azastannathia heterocycle in compounds containing both types of ligands. The di‐n‐butyl‐substituted compounds are the most efficient ones in inhibition of growth of yeasts, molds and G+ bacteria strains. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The 2‐aminobenzothiazole sulfonation intermediate 2,3‐dihydro‐1,3‐benzothiazol‐2‐iminium monohydrogen sulfate, C7H7N2S+·HSO4, (I), and the final product 2‐iminio‐2,3‐dihydro‐1,3‐benzothiazole‐6‐sulfonate, C7H6N2O3S2, (II), both have the endocyclic N atom protonated; compound (I) exists as an ion pair and (II) forms a zwitterion. Intermolecular N—H...O and O—H...O hydrogen bonds are seen in both structures, with bonding energy (calculated on the basis of density functional theory) ranging from 1.06 to 14.15 kcal mol−1. Hydrogen bonding in (I) and (II) creates DDDD and C(8)C(9)C(9) first‐level graph sets, respectively. Face‐to‐face stacking interactions are observed in both (I) and (II), but they are extremely weak.  相似文献   

15.
Intramolecular H‐atom transfer in model peptide‐type radicals was investigated with high‐level quantum‐chemistry calculations. Examination of 1,2‐, 1,3‐, 1,5‐, and 1,6[C ? N]‐H shifts, 1,4‐ and 1,7[C ? C]‐H shifts, and 1,4[N ? N]‐H shifts (Scheme 1), was carried out with a number of theoretical methods. In the first place, the performance of UB3‐LYP (with the 6‐31G(d), 6‐31G(2df,p), and 6‐311+G(d,p) basis sets) and UMP2 (with the 6‐31G(d) basis set) was assessed for the determination of radical geometries. We found that there is only a small basis‐set dependence for the UB3‐LYP structures, and geometries optimized with UB3‐LYP/6‐31G(d) are generally sufficient for use in conjunction with high‐level composite methods in the determination of improved H‐transfer thermochemistry. Methods assessed in this regard include the high‐level composite methods, G3(MP2)‐RAD, CBS‐QB3, and G3//B3‐LYP, as well as the density‐functional methods B3‐LYP, MPWB1K, and BMK in association with the 6‐31+G(d,p) and 6‐311++G(3df,3pd) basis sets. The high‐level methods give results that are close to one another, while the recently developed functionals MPWB1K and BMK provide cost‐effective alternatives. For the systems considered, the transformation of an N‐centered radical to a C‐centered radical is always exothermic (by 25 kJ ? mol?1 or more), and this can lead to quite modest barrier heights of less than 60 kJ ? mol?1 (specifically for 1,5[C ? N]‐H and 1,6[C ? N]‐H shifts). H‐Migration barriers appear to decrease as the ring size in the transition structure (TS) increases, with a lowering of the barrier being found, for example when moving from a rearrangement proceeding via a four‐membered‐ring TS (e.g., the 1,3[C ? N]‐H shift, CH3? C(O)? NH..CH2? C(O)? NH2) to a rearrangement proceeding via a six‐membered‐ring TS (e.g., the 1,5[C ? N]‐H shift, .NH? CH2? C(O)? NH? CH3 → NH2? CH2? C(O)? NH? CH2.).  相似文献   

16.
In novel superatom chemistry, it is very attractive that all‐metal clusters can mimic the behaviors of nonmetal atoms and simple nonmetal molecules. Wizardly all‐metal halogen‐like superatom Al13 with 2P5 sub shell (corresponding to the 3p5 of chlorine) is the most typical example. In contrast, how to mimic the behaviors of magnetic transition‐metal atom using all‐nonmetal cluster is an intriguing challenge for superatom chemistry. In response to this based on human intuition, using quantum chemistry methods and extending jellium model from metal cluster to all‐nonmetal cluster, we have found out that all‐nonmetal octahedral B6 cluster with characteristic jellium electron configuration 1S21P62S21D8 in the triplet ground state can mimic the behaviors of transition‐metal Ni atom with electron configuration 3s23p64s23d8 in electronic configuration, physics and chemistry. Interestingly, the characteristic order of 1S1P2S1D for the B6 nonmetal cluster with short B‐B lengths is different from that of the traditional jellium model—1S1P1D2S for metal clusters with long M‐M lengths, which exhibits a novel size effect of nonmetal cluster on jellium orbital ordering. Based on the jellium electron configuration, the B6 with the spin moment value of 2μB is a new all‐nonmetal transition‐metal nickel‐like superatom exhibiting a new kind of all‐nonmetal magnetic superatom. Finding the application of the all‐nonmetal magnetic superatom, we encapsulate the magnetic superatom B6 inside fully hydrogenated fullerene forming a clathrate B6@C60H60 with the spin moment value of 2μB. As the C60H60 cage as a polymerization unit can conserve the spin moment of endohedral B6, the clathrate B6@C60H60 is a new all‐nonmetal magnetic superatom building block. Naturally, magnetic superatom structures of the B6 and B6@C60H60 may be metastable.  相似文献   

17.
From the viewpoints of large capacity, long‐term guarantee, and low cost, interest in magnetic recording tapes has undergone a revival as an archive storage media for big data. Herein, we prepared a new series of metal‐substituted ?‐Fe2O3, ?‐GaIII0.31TiIV0.05CoII0.05FeIII1.59O3, nanoparticles with an average size of 18 nm. Ga, Ti, and Co cations tune the magnetic properties of ?‐Fe2O3 to the specifications demanded for a magnetic recording tape. The coercive field was tuned to 2.7 kOe by introduction of single‐ion anisotropy on CoII (S=3/2) along the c‐axis. The saturation magnetization was increased by 44 % with GaIII (S=0) and TiIV (S=0) substitution through the enhancement of positive sublattice magnetizations. The magnetic tape media was fabricated using an actual production line and showed a very sharp signal response and a remarkably high signal‐to‐noise ratio compared to the currently used magnetic tape.  相似文献   

18.
The scaffold geometries, stability and magnetic features of the (pyridine‐2‐yl)methanolate (L) supported wheel‐shaped transition‐metal complexes with compositions [M6L12] ( 1 ), [Na?(ML2)6]+ ( 2 ), and [M′?(ML2)6]2+ ( 3 ), in which M=CoII, NiII, CuII, and ZnII were investigated with density functional theory (DFT). The goals of this study are manifold: 1) To advance understanding of the magnetism in the synthesized compounds [Na?(ML2)6]+ and [M′?(ML2)6]2+ that were described in Angew. Chem. Int. Ed.­ 2010 , 49, 4443 ( I ‐{Na?Ni6}, I ‐{Ni′?Ni6}) and Dalton Trans.­ 2011 , 40, 10526 ( II ‐{Na?Co6}, II ‐{Co′?Co6}); 2) To disclose how the structural, electronic, and magnetic characteristics of 1 , 2 , and 3 change upon varying MII from d7 (Co2+) to d10 (Zn2+); 3) To estimate the influence of the Na+ and M′2+ ions (XQ+) occupying the central voids of 2 and 3 on the external and internal magnetic coupling interactions in these spin structures; 4) To assess the relative structural and electrochemical stabilities of 1 , 2 , and 3 . In particular, we focus here on the net spin polarization, the determination of the strength and the sign of the exchange coupling energies, the rationalization of the nature of the magnetic coupling, and the ground‐state structures of 1 , 2 , and 3 . Our study combines the broken symmetry DFT approach and the model Hamiltonian methodology implemented in the computational framework CONDON 2.0 for the modeling of molecular spin structures, to interpret magnetic susceptibility measurements of I ‐{Na?Ni6} and I ‐{Ni′?Ni6}. We illustrate that whereas the structures, stability and magnetism of 1 , 2 , and 3 are indeed influenced by the nature of 3d transition‐metals in the {M6} rims, the XQ+ ions in the inner cavities of 2 and 3 impact these properties to an even larger degree. As exemplified by I ‐{Ni′?Ni6}, such heptanuclear complexes exhibit ground‐state multiplets that cannot be described by simplistic model of spin‐up and spin‐down metal centers. Furthermore, we assess how future low‐temperature susceptibility measurements at high magnetic fields can augment the investigation of compound 3 with M=Co, Ni.  相似文献   

19.
The rational synthesis of the 2‐{1‐methylpyridine‐N‐oxide‐4,5‐[4,5‐bis(propylthio)tetrathiafulvalenyl]‐1H‐benzimidazol‐2‐yl}pyridine ligand ( L ) is described. It led to the tetranuclear complex [Dy4(tta)12( L )2] ( Dy‐Dy2‐Dy ) after coordination reaction with the precursor Dy(tta)3?2 H2O (tta?=2‐thenoyltrifluoroacetonate). The X‐ray structure of Dy‐Dy2‐Dy can be described as two terminal mononuclear units bridged by a central antiferromagnetically coupled dinuclear complex. The terminal N2O6 and central O8 environments are described as distorted square antiprisms. The ac magnetism measurements revealed a strong out‐of‐phase signal of the magnetic susceptibility with two distinct sets of data. The high‐ and low‐frequency components were attributed to the two terminal mononuclear single‐molecule magnets (SMMs) and the central dinuclear SMM, respectively. A magnetic hysteresis loop was detected at very low temperature. From both structural and magnetic points of view, the tetranuclear SMM Dy‐Dy2‐Dy is a self‐assembly of two known mononuclear SMMs bridged by a known dinuclear SMM.  相似文献   

20.
The fluoroquinolone family member ciprofloxacin is well known for its drug design and coordinating ability towards metal ions. The coordination chemistry of this drug with metal ions of biological and pharmaceutical importance is of considerable interest. Novel Mn(III) mixed‐ligand complexes of ciprofloxacin with various bis‐pyrazolone‐based dinegative bidentate ligands were synthesized and characterized on the basis of their physical properties, magnetic susceptibility measurements, (FT‐IR and electronic) spectral studies. The FAB‐mass spectrum of [Mn(A9)(L)(H2O)2]·H2O [where H2A9 = 4,4′‐(p‐tolylmethylene)bis(3‐methyl‐1‐phenyl‐4,5‐dihydro‐1H‐pyrazol‐5‐ol) and HL = 1‐cyclopropyl‐6‐fluoro‐4‐oxo‐7‐(piperazin‐1‐yl)‐1,4‐dihydroquinoline‐3‐carboxylic acid] was determined. All the synthesized compounds were screened for their bioactivity. The mixed‐ligand complexes exhibited comparable activities against two Gram‐negative (Escherichia coli and Serratia marcescens) and two Gram‐positive (Staphylococcus aureus and Bacillus subtilis) microorganisms. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号