首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of hydrophobic chain end groups on the cloud points of thermo‐sensitive water‐soluble polystyrenics were investigated. Well‐defined poly (4‐vinylbenzyl methoxytris(oxyethylene) ether) (PTEGSt) and poly(α‐hydro‐ω‐(4‐vinylbenzyl)tetrakis(oxyethylene)) (PHTrEGSt) were prepared by nitroxide‐mediated radical polymerization using α‐hydrido alkoxyamine initiators including two monomer‐based initiators. The polymers were reduced with (n‐Bu)3SnH to replace the alkoxyamine end group with hydrogen. In the studied molecular weight range (Mn,GPC = 3000 to 28,000 g/mol), we found that the hydrophobic end groups decreased the cloud point by 1–20 °C depending on the molecular weight and the largest depression was observed at the lowest molar mass. The cloud points of PTEGSt and PHTrEGSt with two hydrophobic end groups, phenylethyl and alkoxyamine, exhibited a monotonic increase with the increase of molecular weight. For polymers with only one hydrophobic end group, either phenylethyl or alkoxyamine, the cloud point initially increased with the increase of molecular weight but leveled off/decreased slightly with further increasing molar mass. For polymers with essentially no end groups, the cloud point decreased with the increase of chain length, which represents the “true” molecular weight dependence of the cloud point. The observed molecular weight dependences of the cloud points of polystyrenics with hydrophobic end group(s) are believed to result from the combined end group effect and “true” molecular weight effect. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3707–3721, 2007  相似文献   

2.
A series of water‐soluble semirigid thermoresponsive polymers with well‐defined molecular weights based on mesogen‐jacketed liquid crystal polymers (MJLCPs), poly[bis(N‐hydroxyisopropyl pyrrolidone) 2‐vinylterephthalate] (PHIPPVTA) have been synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization. Dynamic light scattering (DLS) revealed that the novel monomer and polymers have thermoresponsive properties with cloud point in the range between 10 and 90 °C. The cloud point was increased by 56.2 °C when the polymer molecular weight increased from 0.47 × 104 g mol?1 to 3.69 × 104 g mol?1. In addition, the cloud point of PHIPPVTA was decreased by 18.8 °C with the increase of polymer concentration from 5 to 10 mg mL?1. A slight increase (0.1–3.5 °C) of cloud point has been observed after knocking off the end‐groups of PHIPPVTA. Moreover, the cloud point of polymer increased with increasing of its molecular weight with or without the trithiocarbonate end‐groups, which showed the opposite trend comparing with other thermoresponsive polymers with flexible backbones. These polymers show a dramatic solvent isotopic effect that the cloud point in D2O was lower than in H2O. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
A new water soluble fluorene‐based polyelectrolyte containing on‐chain porphyrin units has been synthesized via Suzuki coupling, for use in optoelectronic devices. The material consist of a random copolymer of poly{1,4‐phenylene‐[9,9‐bis(4‐phenoxy butylsulfonate)]fluorene‐2,7‐diyl} (PBS‐PFP) and a 5,15‐diphenylporphyrin (DPP). The energy transfer process between the PBS‐PFP units and the porphyrin has been investigated through steady state and time‐resolved measurements. The copolymer PBS‐PFP‐DPP displays two different emissions one located in the blue region of the spectra, corresponding to the fluorene part and another in the red due to fluorescent DPP units either formed directly or by exciton transfer. However, relatively inefficient energy transfer from the PFP to the on‐chain porphyrin units was observed. We compare this with a system involving an anionic blue light‐emitting donor PBS‐PFP and a anionic red light‐emitting energy acceptor meso‐tetrakisphenylporphyrinsulfonate (TPPS), self‐assembled by electrostatic attraction induced by Ca2+. Based on previous studies related to chain aggregation of the anionic copolymer PBS‐PFP, two different solvent media were chosen to further explore the possibilities of the self‐assembled system: dioxane–water and aqueous nonionic surfactant n‐dodecylpentaoxyethylene glycol ether (C12E5). In contrast, with the on‐chain PBS‐PFP‐DPP system the strong overlap of the 0‐0 emission peak of the PBS‐PFP and the Soret absorption band of the TPPS results in an efficient Förster transfer. This is strongly dependent on the solvent medium used. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
The easily accessible, but virtually overlooked monomer methoxy diethylene glycol acrylate was polymerized by the RAFT method using monofunctional, difunctional, and trifunctional trithiocarbonates to afford thermoresponsive polymers exhibiting lower critical solution temperature‐type phase transitions in aqueous solution. The use of the appropriate RAFT agent allowed for the preparation and systematic variation of polymers with defined molar mass, end‐groups, and architecture, including amphiphilic diblock, symmetrical triblock, and triarm star‐block copolymers, containing polystyrene as permanently hydrophobic constituent. The cloud points (CPs) of the various polymers proved to be sensitive to all varied parameters, namely molar mass, nature, and number of the end‐groups, and the architecture, up to relatively high molar masses. Thus, CPs of the polymers can be adjusted within the physiological interesting range of 20–40 °C. Remarkably, CPs increased with the molar mass, even when hydrophilic end groups were attached to the polymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
The precise synthesis and variation in the thermoresponsive property based on the supramolecular assembly of a novel urea end‐functionalized poly(N‐isopropylacrylamide) (PNIPAM) were studied. A series of PNIPAMs with different diphenylurea groups at the chain end (X? Ph? NH? CO? NH? Ph? trz? PNIPAM: X = H, OCH3, CH3, NO2, Cl, and CF3) were synthesized by using a combination of the atom transfer radical polymerization and the copper(I)‐catalyzed azide‐alkyne cycloaddition. The cloud point of the obtained polymers depended on the hydrogen‐bonding ability of the introduced urea group. The 1H NMR measurement suggested that the obtained PNIPAM assembled in water via the intermolecular hydrogen bonding by the terminal urea group. From the dynamic light scattering and transmission electron microscopy measurements, the aggregated nanoparticles of the resulting polymer were directly observed in water at a temperature below its cloud point. The hydrogen‐bonding property of the chain end urea group was concluded to be involved in the aggregation of the PNIPAM in water, leading to the variation in its cloud point. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6259–6268, 2009  相似文献   

6.
A series of comb polymers consisting of a methacrylate backbone and poly(2‐ethyl‐2‐oxazoline) (PEtOx) side chains was synthesized by a combination of cationic ring‐opening polymerization and reversible addition–fragmentation chain transfer polymerization. Small‐angle neutron scattering (SANS) studies revealed a transition from an ellipsoidal to a cylindrical conformation in D2O around a backbone degree of polymerization of 30. Comb‐shaped PEtOx has lowered Tg values but a similar elution behavior in liquid chromatography under critical conditions in comparison to its linear analog was observed. The lower critical solution temperature behavior of the polymers was investigated by turbidimetry, dynamic light scattering, transmission electron microscopy, and SANS revealing decreasing Tcp in aqueous solution with increasing molar mass, the presence of very few aggregated structures below Tcp, a contraction of the macromolecules at temperatures 5 °C above Tcp but no severe conformational change of the cylindrical structure. In addition, the phase diagram including cloud point and coexistence curve was developed showing an LCST of 75 °C of the binary mixture poly[oligo(2‐ethyl‐2‐oxazoline)methacrylate]/water. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
Controlled radical polymerizations of N‐ethylmethylacrylamide (EMA) by atom transfer radical polymerization and reversible addition‐fragmentation chain transfer processes were investigated in detail for the first time, employing complementary characterization techniques including gel permeation chromatography, 1H NMR spectroscopy, and matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry. In both cases, relatively good control of the polymerization of EMA was achieved, as revealed by the linear evolution of molecular weights with monomer conversions and the low polydispersity of poly(N‐ethylmethylacrylamide) (PEMA). The thermal phase transitions of well‐defined PEMA homopolymers with polydispersities less than 1.2 and degrees of polymerization up to 320 in aqueous solution were determined by temperature‐dependent turbidity measurements. The obtained cloud points (CPs) vary in the range of 58–68 °C, exhibiting inverse molecular weight and polymer concentration dependences. Moreover, the presence of a carboxyl group instead of an alkyl one at the PEMA chain end can elevate its CP by ~3–4 °C. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 60–69, 2008  相似文献   

8.
Well‐defined PDMS telechelics having nitrobenzoxadiazole (NBD) fluorescent probes covalently attached at both chain‐ends were prepared in two steps and a series of fractionation procedures starting from commercially available divinyl‐terminated PDMS having a broad molar mass dispersity. First, thiol‐ene coupling between 6‐mercapto‐1‐hexanol and vinyl chain‐ends allowed the formation of dihydroxy‐terminated PDMS telechelics through the formation of a thioether linkage. The resulting material was then sequentially fractionated using dichloromethane/methanol mixtures to afford several well‐defined dihydroxy‐terminated PDMS fractions having sharp distributions of molar masses (Mn = 99.5–158 kDa and ? < 1.2). The NBD fluorescent probes were then attached at both chain‐ends by N,N′‐dicyclohexylcarbodiimide/4‐(dimethylamino)pyridine esterification coupling between the hydroxyl groups and 6‐(7‐nitrobenzofurazan‐4‐ylamino)hexanoic acid. The resulting fluorescent PDMS telechelics were characterized by SEC, 1H NMR, UV–visible, and fluorescence spectroscopies. These materials are suitable probes to investigate the dynamics of polymer chains in bulk or at interfaces by the fringe pattern fluorescent recovery after photobleaching technique. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
Through atom transfer radical polymerization of styrene with 1,3‐dibromomethyl‐5‐propargyloxy‐benzene as initiator followed by the conversion of bromine end‐groups into azide end‐groups, well‐defined seesaw‐type polystyrene (PSt) macromonomers with two molecular weights (Mn = 8.0 and 28.0 k) were obtained. Thus, a series of long‐subchain hyperbranched (lsc‐hp) PSt with high overall molar masses and regular subchain lengths were obtained via copper‐catalyzed azide–alkyne cycloaddition click chemistry performed in THF and DMF, respectively. The polycondensation of seesaw‐type macromonomers was monitored by gel permeation chromatography. Because DMF is the reaction medium with higher polarity, click reaction proceeds more easily in DMF. Therefore, the growth of lsc‐hp PSt in DMF has faster rate than that in THF for the shorter seesaw‐type macromonomer (Seesaw‐8k). However, THF is the solvent with better solubility to PSt and leads to looser conformation of PSt chains. Thus, for the longer seesaw macromonomer (Seesaw‐28k), lsc‐hp PSt in THF has higher overall molar mass. As well, the self‐cyclization of seesaw‐type macromonomers also depends on both solvent and molar mass of macromonomer. The self‐cyclization degrees of Seesaw‐8k in DMF and THF are almost the same while that of Seesaw‐28k macromonomer is obviously lower in THF. The experimental results suggest a physical consideration to control the growth of hyperbranched polymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Diblock copolymers of poly[2‐(dimethylamino)ethyl methacrylate]‐block‐poly[di(ethylene glycol) methyl ether methacrylate], PDMAEMA‐b‐PDEGMA, were synthesized by reversible addition–fragmentation chain transfer polymerization. The block ratio was varied to study the influence on the lower critical solution temperature and the corresponding phase transition in water. Therefore, turbidimetry, differential scanning calorimetry (DSC), dynamic light scattering (DLS), and laser Doppler velocimetry were applied. Additionally, asymmetric flow field‐flow fractionation (AF4) coupled to DLS and multiangle laser light scattering (MALLS) was established as an alternative route to characterize these systems in terms of molar mass of the polymer chain and size of the colloids after the phase transition. It was found that AF4–MALLS allowed accurate determination of molar masses in the studied range. Nevertheless, some limitations were observed, which were critically discussed. The cloud point and phase transition of all materials, as revealed by turbidimetry, could be confirmed by DSC. For block copolymers with block ratios in the range of 50:50, a thermo‐induced self‐assembly into micellar and vesicular structures with hydrodynamic radii (Rh) of around 25 nm was observed upon heating. At higher temperatures, a reordering of the self‐assembled structures could be detected. The thermo‐responsive behavior was further investigated in dependence of pH value and ionic strength. Variation of the pH value mainly influences the solubility of the PDMAEMA segment, where a decrease of the pH value increases the transition temperature. An increase of ionic strength leads to a reduction of the cloud point due to the screening of electrostatic interactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 924–935  相似文献   

11.
Homopolymerization and diblock copolymerization of 2‐hydroxypropyl acrylate (HPA) has been conducted using reversible addition fragmentation chain transfer (RAFT) chemistry in tert‐butanol at 80 °C. PHPA homopolymers were obtained with high conversions and narrow molecular weight distributions over a wide range of target degrees of polymerization. Like its poly(2‐hydroxyethyl methacrylate) isomer, PHPA homopolymer exhibits inverse temperature solubility in dilute aqueous solution, with cloud points increasing systematically on lowering the mean chain length. The nature of the end groups is shown to significantly affect the cloud point, whereas no effect of concentration was observed over the PHPA concentration range investigated. Various thermoresponsive PHPA‐based diblock copolymers were prepared via one‐pot syntheses in which the second block was either permanently hydrophilic or pH‐responsive. Preliminary studies confirmed that poly(ethylene oxide)‐poly(2‐hydroxypropyl acrylate) (PEO45‐PHPA48) and poly(2‐hydroxypropyl acrylate)‐ poly(2‐hydroxyethyl acrylate) (PHPA49‐PHEA68)diblock copolymers formed well‐defined PHPA‐core micelles in 10 mM sodium nitrate solution at 40 °C and 70 °C with mean hydrodynamic diameters of 20 nm and 35 nm, respectively. In contrast, most other PHPA‐based diblock copolymers investigated formed larger colloidal aggregates in 10 mM NaNO3 solution at elevated temperatures. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2032–2043, 2010  相似文献   

12.
Surface‐initiated atom transfer radical polymerization (SI‐ATRP) of N‐isopropylacrylamide (NIPAM) on silicon wafer in the presence of 2‐mercaptoethanol (ME) chain transfer agent was conducted in attempt to create controllable hydroxyl‐terminated brushes. The initiator‐immobilized substrate, was prepared by the esterification of hydroxyl groups on silicon wafer with 2‐bromopropionyl bromide (2‐BPB); followed by the ATRP of NIPAM using a catalyst system, that is, Cu(I)Br/2,2′‐bipyridine (2,2′‐bpy) and a chain transfer agent, that is, ME. The formation of homogeneous tethered poly(N‐isopropylacrylamide) (poly(NIPAM) brushes with hydroxyl end‐group, whose thickness can be tuned by chancing ME concentration, is evidenced by using the combination of grazing angle attenuated total reflectance‐Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, ellipsometry, atomic force microscopy, gel permeation chromatography, and water contact‐angle measurements. The calculation of grafting parameters from experimental measurements indicated the synthesis of densely grafted poly(NIPAM) films with hydroxyl end‐group on silicon wafer and allowed us to predict a ME concentration for forming a “brush” conformation for the chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3880–3887, 2010  相似文献   

13.
Core‐shell type star polymers composed of poly(tert‐butyl acrylate) (poly(t‐BuA)) arms and 100% hyperbranched poly(arylene‐oxindole) interiors were synthesized via the “core‐first” method. Atom transfer radical polymerization of t‐BuA initiated by 2‐bromopropionyl terminal groups of the hyperbranched core was applied for the synthesis of the stars. The resultant star structures were characterized by gel permeation chromatography with triple detection. Polymers of molar masses Mn up to 1.68 × 105 g/mol were obtained. The obtained star polymers compared with the linear counterparts of the same molar mass have a much more compact structure in solution. The intrinsic viscosities of the stars are also significantly lower than their linear counterparts. Light scattering experiments were performed to provide information about the size of these macromolecules in solution. Preliminary characterization of the thermal properties of these novel materials is also reported. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1120–1135, 2009  相似文献   

14.
Poly(ethylethylene‐b‐ethylene oxide) (PEE‐PEO) diblock copolymers with pyridine‐benzoic acid end‐groups for heterodimeric hydrogen bonding were designed as a possible means to noncentrosymmetric organizations by spontaneous self‐assembly. These end‐functionalized polymers were synthesized by anionic living polymerization with protected initiator and terminating reagents. A series of polymeric intermediates with different end‐groups was characterized by proton nuclear magnetic resonance, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, and gel permeation chromatography. Preliminary studies of solid‐state organization by differential scanning calorimetry and small‐angle X‐ray scattering provided evidence for a long‐range order that was sensitive to chain length, copolymer composition, and end‐group structure. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 207–219, 2000  相似文献   

15.
An efficient one‐pot process to functionalize the α‐ and ω‐positions of RAFT‐derived poly(N‐isopropylacrylamide) (PNIPAM) by two inherently different mechanistic pathways is reported. The method relies on the RAFT polymerization of NIPAM using a new alkyne‐based RAFT agent, namely 2‐cyano‐5‐oxo‐5‐(prop‐2‐yn‐1‐ylamino)pentan‐2‐yl dodecyltrithiocarbonate (COPYDC) and the combination of thiol‐yne click chemistry and thiocarbonylthio chain‐end removal reactions. COPYDC was prepared in good yield and used as an efficient chain transfer agent during the RAFT polymerization of NIPAM. Well‐defined polymers with controlled molar masses ( = 7500–14,700 g.mol?1) and narrow dispersities (? = 1.18–1.26) are thus obtained. Cascade thiol‐yne click reaction at the alkyne α‐chain end and trithiocarbonate removal at the ω‐chain end are successfully achieved using benzyl mercaptan and excess AIBN. The reported method provides a facile and mild route to heterofunctional telechelic RAFT polymers with predictable molar masses and low dispersities. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3597–3606  相似文献   

16.
The copolymerization of propylene and 3‐buten‐1‐ol protected with alkylaluminum [trimethylaluminum (TMA) or triisobutylaluminum] was conducted with an isospecific zirconocene catalyst [rac‐dimethylsilylbis(1‐indenyl)zirconium dichloride], combined with methylaluminoxane as a cocatalyst, in the presence of additional TMA or H2 as the chain‐transfer reagent if necessary. The results indicated that end‐hydroxylated polypropylene was obtained in the presence of the chain‐transfer reagents because of the formation of dormant species after the insertion of the 3‐buten‐1‐ol‐based monomer followed by chain‐transfer reactions. The selectivity of the chain‐transfer reactions was influenced by the alkylaluminum protecting the comonomer and the catalyst structure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5600–5607, 2004  相似文献   

17.
Low‐molecular‐weight poly(acrylic acid) (PAA) was synthesized by reversible addition fragmentation chain transfer polymerization with a trithiocarbonate as chain‐transfer agent (CTA). With a combination of NMR spectroscopy and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, the PAA end‐groups of the polymer were analyzed before and after neutralization by sodium hydroxide. The polymer prior to neutralization is made up of the expected trithiocarbonate chain‐ends and of the H‐terminated chains issued from a reaction of transfer to solvent. After neutralization, the trithiocarbonates are transformed into thiols, disulfides, thiolactones, and additional H‐terminated chains. By quantifying the different end‐groups, it was possible to demonstrate that fragmentation is the rate limiting step in the transfer reaction. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5439–5462, 2004  相似文献   

18.
A new monomer derivative of N‐vinyl‐2‐caprolactam (VCL), namely 3‐(tert‐butoxycarbonylmethyl)‐N‐vinyl‐2‐caprolactam (TBMVCL), was synthesized via nucleophilic substitution at the α‐carbon to the lactam carbonyl group. The monomer was copolymerized radically with VCL and the copolymer compositions were controlled through varying the molar feeding percentages of TBMVCL. The resulting copolymers exhibited temperature‐responsive properties in water, with cloud points decreasing from 33 °C to 13 °C when the TBMVCL composition increased from 2.2 mol % to 18.6 mol %. Removal of the tert‐butyl protecting groups via acid hydrolysis exposed the carboxyl groups, which conferred pH sensitivity to the thermoresponsive properties of the resulting deprotected copolymers. The cloud point was found to increase with the increase of solution pH from 2.0 to 7.4, due to the ionization of the carboxyl groups. The influence of pH was most drastic for the 18.6 mol % copolymer composition. Furthermore, the phase transition temperature of the deprotected copolymers was found to be dependent on the polymer solution concentration, exemplifying classical Flory–Huggins miscibility behavior. Comparison of responsiveness was also made with another type of carboxyl functionalized poly(N‐vinyl‐2‐caprolactam) copolymer reported in our prior study, to examine the influence of the chemical structure of the carboxyl substitution group. Finally, the deprotected copolymer was demonstrated to be biocompatible using a fibroblast cell culture. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 112–120  相似文献   

19.
Poly(N‐vinylcaprolactam) (PNVCL) star‐shaped polymers with four arms and carboxyl end groups were synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization of N‐vinylcaprolactam (NVCL) employing a tetrafunctional trithiocarbonate as an R‐RAFT agent. The resulting star polymers were characterized using 1H NMR, FT‐IR, gel permeation chromatography (GPC), and UV–vis. Molecular weight of star polymers were analyzed by GPC and UV–vis being observed that the values obtained were very similar. Furthermore, the thermosensitive behavior of the star polymers was studied in aqueous solution by measuring the lower critical solution temperature by dynamic light scattering. Star‐shaped PNVCL were chain extended with ethyl‐hexyl acrylate (EHA) to yield star PNVCL‐b‐PEHA copolymers with an EHA molar content between 4% and 6% proving the living character of the star‐shaped macroCTA. These star block copolymers form aggregates in aqueous solutions with a hydrodynamic diameter ranged from 170 to 225 nm. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2156–2165  相似文献   

20.
Stable high‐solids‐content methyl methacrylate/butylacrylate latexes with small particle sizes (in the range of 150–180 nm) were obtained with a nonionic polymerizable surfactant (surfmer). Three percent of surfmer with respect to monomer was proven to be enough for the stabilization of the latexes. The influence of different operational variables on the stabilization of the final latex was analyzed, and the conditions needed to obtain coagulum‐free latex were assessed. The inorganic potassium persulfate/sodium metabisulfite initiator system provided better stability than the organic tert‐butyl hydroperoxide/ascorbic acid as a result of the end groups. In addition, the feeding of acrylic acid during the second half of the polymerization improved the stability of the final latex. The reduction of the feeding time was effective in the stabilization. Proof of the surfmer incorporation into the particles is presented. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1552–1559, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号