首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 777 毫秒
1.
We have applied a discretized version of the generator coordinate Hartree–Fock method to generate adapted Gaussian basis sets for atoms Cs (Z=55) to Lr (Z=103). Our Hartree–Fock total energy results, for all atoms studied, are better than the corresponding Hartree–Fock energy results attained with previous Gaussian basis sets. For the atoms Cs to Lr we have obtained an energy value within the accuracy of 10−4 to 10−3 hartree when compared with the corresponding numerical Hartree–Fock total energy results. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 858–865, 1998  相似文献   

2.
Accurate Gaussian basis sets (18s for Li and Be and 20s11p for the atoms from B to Ne) for the first‐row atoms, generated with an improved generator coordinate Hartree–Fock method, were contracted and enriched with polarization functions. These basis sets were tested for B2, C2, BeO, CN, LiF, N2, CO, BF, NO+, O2, and F2. At the Hartree–Fock (HP), second‐order Møller–Plesset (MP2), fourth‐order Møller–Plesset (MP4), and density functional theory (DFT) levels, the dipole moments, bond lengths, and harmonic vibrational frequencies were studied, and at the MP2, MP4, and DFT levels, the dissociation energies were evaluated and compared with the corresponding experimental values and with values obtained using other contracted Gaussian basis sets and numerical HF calculations. For all diatomic molecules studied, the differences between our total energies, obtained with the largest contracted basis set [6s5p3d1f], and those calculated with the numerical HF methods were always less than 3.2 mhartree. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 78: 15–23, 2000  相似文献   

3.
We have generated Gaussian basis sets (GBSs) for the neutral and the first 20 cations members of the isoelectronic series of each ground state atom from He to Ne with the improved generator coordinate Hartree–Fock (IGCHF) method. For all atomic species studied here, our total energy errors are smaller than those calculated by the original GCHF method using GBSs of the same sizes. The largest difference between our total energy results and those computed with a numerical Hartree–Fock approach is equal to 215 μhartree for Co17+. We also compare the ionization potentials obtained with the IGCHF with the corresponding experimental values. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem 88: 252–262, 2002  相似文献   

4.
5.
The generator coordinate Hartree–Fock (GCHF) method is employed as a criterion for the selection of a 18s12p Gaussian basis for the atoms Na–Ar. The role of the weight functions in the assessment of the numerical integration range of the GCHF equations is shown. The extended basis is then contracted to (10s6p) by a standard procedure and in combination with the previously contracted (7s5p) Gaussian basis for the atoms Li–Ne is enriched with polarization functions. This basis is tested for AlF, SiO, PN, BCl, and P2. The properties of interest were HF total energies, MP2 dipolar moments, bond distances, and dissociation energies. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 63: 927–934, 1997  相似文献   

6.
An improved generator coordinate Hartree–Fock (HF) method is used to generate accurate triple‐optimized Gaussian basis sets for the cations from He+ (Z=2) through Ne+ (Z=10) and from K+ (Z=19) through Xe+ (Z=54), and for the anions from H (Z=1) through F (Z=9) and from K (Z=19) through I (Z=53). For all ions here studied, our ground‐state HF total energies are better than those calculated with the generator coordinate HF method, using optimized Gaussian basis sets of the same size. For all ions studied, the largest difference between our total energy values and the corresponding results obtained with a numerical HF method is equal to 3.434 mhartrees for Te+. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 82: 126–130, 2001  相似文献   

7.
Hartree–Fock instabilities are investigated for about 80 compounds, from acetylene to mivazerol (27 atoms) and a cluster of 18 water molecules, within a double ζ basis set. For most conjugated systems, the restricted Hartree–Fock wave function of the singlet fundamental state presents an external or so‐called triplet instability. This behavior is studied in relation with the electronic correlation, the vicinity of the triplet and singlet excited states, the electronic delocalization linked with resonance, the nature of eventual heteroatoms, and the size of the systems. The case of antiaromatic systems is different, because they may present a very large internal Hartree–Fock instability. Furthermore, the violation of Hund's rule, observed for these compounds, is put in relation with the fact that the high symmetry structure in its singlet state has no feature of a diradical‐like species. It appears that the triplet Hartree–Fock instability is directly related with the spin properties of nonnull orbital angular momentum electronic systems. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 483–504, 2000  相似文献   

8.
Analytical, variational approximations to Hartree–Fock wave functions are constructed for the ground states of all the neutral atoms from He to Xe, the cations from Li+ to Cs+, and the stable anions from H to I. The wave functions are constrained so that each atomic orbital agrees well with the electron–nuclear cusp condition and has good long‐range behavior. Painstaking optimization of the exponents and principal quantum numbers of the Slater‐type basis functions allows us to reach this goal while obtaining total energies that, at worst, are a few microHartrees above the numerical Hartree–Fock limit values. The wave functions are freely available by anonymous ftp from okapi.chem.unb.ca or upon request to the authors. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 71: 491–497, 1999  相似文献   

9.
We formulate a Hartree–Fock‐LAPW method for electronic band structure calculations. The method is based on the Hartree–Fock–Roothaan approach for solids with extended electron states and closed core shells where the basis functions of itinerant electrons are linear augmented plane waves. All interactions within the restricted Hartree–Fock approach are analyzed and in principle can be taken into account. In particular, we obtained the matrix elements for the exchange interactions of extended states and the crystal electric field effects. To calculate the matrix elements of exchange for extended states, we first introduce an auxiliary potential and then integrate it with an effective charge density corresponding to the electron exchange transition under consideration. The problem of finding the auxiliary potential is solved by using the strategy of the full potential LAPW approach, which is based on the general solution of periodic Poisson's equation. Here, we use an original technique for the general solution of periodic Poisson's equation and multipole expansions of electron densities. We apply the technique to obtain periodic potentials of the face‐centered cubic lattice and discuss its accuracy and convergence in comparison with other methods. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

10.
11.
An open‐shell Hartree–Fock (HF) theory for spin‐dependent, two‐component relativistic calculations, termed the Kramers‐unrestricted HF (KUHF) method, is developed. The present KUHF method, which is formulated as a relativistic counterpart of nonrelativistic UHF, is based on quaternion algebra and partly uses time‐reversal symmetry. The fundamental characteristics of KUHF are discussed in this study. From numerical assessments, it was revealed that KUHF gives a corresponding solution to nonrelativistic UHF; furthermore, KUHF properly describes spin‐orbit interactions. In addition, KUHF can improve the self‐consistent field convergence behavior in spin‐dependent calculations, for example, for f‐block elements.  相似文献   

12.
The molecular structure, vibrational spectrum, standard thermodynamic functions, and enthalpy of formation of free base phthalocyanine (Pc) have been studied using the density functional theory B3LYP procedure, as well as the ab initio Hartree–Fock method. Various basis sets 3‐21G, 6‐31G*, and LANL2DZ have been employed. The results obtained at various levels are discussed and compared with each other and with the available experimental data. It is shown that calculations performed at the Hartree–Fock level cannot produce a reliable geometry and related properties such as the dipole moment of Pc and similar porphyrin‐based systems. Electron correlation must be included in the calculations. The basis set has comparatively less effect on the calculated results. The results derived at the B3LYP level using the smaller 3‐21G and LANL2DZ basis sets are very close to those produced using the medium 6‐31G* basis set. The geometry of Pc obtained at the B3LYP level has D2h symmetry and the diameter of the central macrocycle is about 4 Å. The enthalpy of formation of Pc in the gas phase has been predicted to be 1518.50 kJ/mol at the B3LYP/6‐311G(2d,2p)//B3LYP/6‐31G* level via an isodesmic reaction. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

13.
Ways to reduce the computational cost of periodic electronic structure calculations by using basis functions corresponding to linear combinations of planewaves have been examined recently. These contracted planewave (CPW) basis functions correspond to Fourier series representations of atom‐centered basis functions, and thus provide access to some beneficial properties of planewave (PW) and localized basis functions. This study reports the development and assessment of a direct inversion of the iterative subspace (DIIS) method that employs unique properties of CPW basis functions to efficiently converge electronic wavefunctions. This method relies on access to a PW‐based representation of the electronic structure to provide a means of efficiently evaluating matrix–vector products involving the application of the Fock matrix to the occupied molecular orbitals. These matrix–vector products are transformed into a form permitting the use of direct diagonalization techniques and DIIS methods typically employed with atom‐centered basis sets. The abilities of this method are assessed through periodic Hartree–Fock calculations of a range of molecules and solid‐state systems. The results show that the method reported in this study is approximately five times faster than CPW‐based calculations in which the entire Fock matrix is calculated. This method is also found to be weakly dependent upon the size of the basis set, thus permitting the use of larger CPW basis sets to increase variational flexibility with a minor impact on computational performance. © 2018 Wiley Periodicals, Inc.  相似文献   

14.
The problem of bond length alternation in cyclic polyene models as described by the Pariser–Parr–Pople π-electron Hamiltonian, together with an empirical quasi harmonic σ-core potential is investigated using the unrestricted Hartree–Fock wave function employing different spatial orbitals for different spins. It is shown that in contrast to the restricted Hartree–Fock method, which favors bond alternation in large cyclic polyenes, the unrestricted Hartree–Fock method stabilizes the symmetric structures with equidistant internuclear separation. An assessment of the amount of correlation error recovered by the unrestricted Hartree–Fock procedure is examined and the qualitatively different behavior of the cyclic polyene models when described by restricted and unrestricted Hartree–Fock wave functions is discussed from this viewpoint.  相似文献   

15.
The conditions for instability of solutions of Hartree–Fock and projected Hartree–Fock equations are derived in a form involving finite real symmetric matrices. These conditions are also expressed in terms of the Fock–Dirac density matrix, both at the spin–orbital and at the orbital level. The particular variations which give rise to the so-called singlet and triplet instabilities are described.  相似文献   

16.
The unrestricted complete active space self-consistent field (UCASSCF ) function is defined, and a proof that a UCASSCF eigenfunction of the spin operator S 2 is a CASSCF function is given. The spin-contamination for an unrestricted Hartree–Fock (UHF ) function is evaluated by using Araki angle operators, and the UHF function is then projected on the restricted open-shell Hartree–Fock (ROHF ) space. The present analysis has deep consequences since it implies that the only non-spin-contaminated UHF functions are the ROHF functions. This is illustrated in a calculation of the spin density of He. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
The Hartree–Fock–Bogoliubov (HFB) method, dealing with Bogoliubov orbitals, which consist of particle and hole part, can provide states with pair correlations associated with Cooper pairs. The dimension of HFB Fock matrices can be reduced by restrictions of spin states of Bogoliubov orbitals similarly to ordinary Hartree–Fock (HF) equations such as restricted HF (RHF), unrestricted HF (UHF), and generalized HF (GHF). However, there are few studies of moderate restricted HFB equations such as UHF‐based HFB equations. In this article, formulation and calculations of restricted HFB equations are described. The solutions of general and restricted HFB equations are compared. Pair correlations taking account of restricted and general HFB equations are discussed. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

18.
The dipole and quadrupole derivatives of H2O and H2S are calculated analytically, using the coupled Hartree—Fock method first proposed by Gerratt and Mills. The greater efficiency, of this method allows SCF wave functions very, close to the Hartree—Fock limit to be used. Agreement, with experimental data is good.  相似文献   

19.
An open‐shell Hartree–Fock (HF) theory for spin‐dependent two‐component relativistic calculations, termed the Kramers‐restricted open‐shell HF (KROHF) method, is developed. The present KROHF method is defined as a relativistic analogue of ROHF using time‐reversal symmetry and quaternion algebra, based on the Kramers‐unrestricted HF (KUHF) theory reported in our previous study (Int. J. Quantum Chem., doi: 10.1002/qua.25356 ). As seen in the nonrelativistic ROHF theory, the ambiguity of the KROHF Fock operator gives physically meaningless spinor energies. To avoid this problem, the canonical parametrization of KROHF to satisfy Koopmans' theorem is also discussed based on the procedure proposed by Plakhutin et al. (J. Chem. Phys. 2006 , 125, 204110). Numerical assessments confirmed that KROHF using Plakhutin's canonicalization procedure correctly gives physical spinor energies within the frozen‐orbital approximation under spin–orbit interactions.  相似文献   

20.
We present a study of the instability and convergence of Hartree–Fock (HF) ab initio solutions for the diatomic systems H2, LiH, CH, C2, and N2. In our study, we consider real molecular orbitals (MOs) and analyze the classes of single‐determinant functions associated to Hartree–Fock–Roothaan (HFR) and Hartree–Fock–Pople–Nesbet (HFPN) equations. To determine the multiple HF solutions, we used either an SCF iterative procedure with aufbau and non‐aufbau ordering rules or the algebraic method (AM). Stability conditions were determined using TICS and ASDW stability matrices, derived from the maximum and minimum method of functions (MMF). We examined the relationship between pure SCF convergence criterion with the aufbau ordering rule, and the classification of the HF solution as an extremum point in its respective class of functions. Our results show that (i) in a pure converged SCF calculation, with the aufbau ordering rule, the solutions are not necessarily classified as a minimum of the HF functional with respect to the TICS or ASDW classes of solutions, and (ii) for all studied systems, we obtained local minimum points associated only with the aufbau rule and the solutions of lower energies. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 76: 600–610, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号