首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excitation curves for the 21Ne(p, γ)22Na, 21Ne(p, p′γ)21Ne and21Ne(p, p)21Ne reactions have been obtained for Ep = 0.4–1.6 MeV. Neon gas enriched to 92 % in 21Ne was recirculated in a differentially pumped gas target system. The fifteen previously reported (p, γ) resonances were established and nineteen new (p, γ) resonances found. Anomalies in the elastic scattering yield were observed for fourteen resonances. The reported state at Ex = 7278 ± 7 keV in 22Na was resolved into a doublet separated by 1 keV. All unbound states in 22Na, observed previously in other reactions, have been confirmed as resonance states in the energy range covered, with the exception of the Ex = 7942 ± 7 keV state. The new Ep = 663, 694, 1235, 1432 and 1543 keV resonances correspond to new unbound states in 22Na. Excitation energies, γ-ray decay schemes, resonance widths and strengths as well as limits on Jπ assignments are reported for all the resonances. From the Coulomb excitation of the Ex = 350 keV, first excited state in 21Ne a value of B(E2) = 0.014 ± 0.002 e2 · b2 is deduced. The astrophysical as well as the nuclear structure implications of the present results are discussed.  相似文献   

2.
The high-energy tail of the Jπ = 12+, 2425 keV state in 21Na, bound by 7 keV against proton decay, has been observed in the 20Ne (p,γ)21Na reaction at Ep=0.5?1.5 MeV. The observed excitation function is consistent with a single-level Breit-Wigner shape with Γγ=0.31±0.07 eV at Ex = 2425 keV.  相似文献   

3.
The cross section for the 15N(p, α0)12C reaction has been measured at θlab = 135° over the proton energy range 93 ≦ Ep ≦ 418 keV. The results are in good agreement with the less precise but much earlier measurements of Schardt, Fowler and Lauritsen (1952). An analysis of the present data in terms of a two-level calculation including the 338 keV (1?) and 1028 keV (1?) resonances determines a zero-energy intercept for the astrophysical S-factor of S(0) = 78 ± 6 MeV · b.  相似文献   

4.
Excitation functions were measured for states of 21Ne populated by the 12C(13C, α) reaction over the bombarding energy range Elab = 18.2–32.0 MeV (18.4–27.0 MeV) at θlab = 7°(25°) in in 200 keV steps, and average coherence widths of states and the moment of inertia of the compound nucleus 25Mg were obtained from these excitation functions. A statistical analysis of these data was performed. Angular distributions for states in 21Ne to 10 MeV in excitation energy were measured at θlab = 7°, 18°, 28° and 43° at bombarding energies from 29.0 to 31.0 MeV in 400 keV steps. These data along with Hauser-Feshbach predictions allow us to suggest spins for some states as well as to suggest possible candidates for rotational bands in 21Ne.  相似文献   

5.
Excitation functions of the capture reaction 12C(p, γ0)13N have been obtained at θγ = 0° and 90° and Ep = 150–2500 keV. The results can be explained if a direct radiative capture process, E1(s and d → p), to the ground state in 13N is included in the analysis in addition to the two well-known resonances in this beam energy range [Ep = 457(12+) and 1699 (32?) keV]. The direct capture component is enhanced through interference effects with the two resonance amplitudes. From the observed direct capture cross section, a spectroscopic factor of C2S(l = 1) = 0.49 ± 0.15 has been deduced for the 12? ground state in 13N. Excitation functions for the reaction 12C(p,γ1p1)12C have been obtained at θγ = 0° and 90° and Ep = 610–2700 keV. Away from the 1699 keV resonance the capture γ-ray yield is dominated by the direct capture process E1 (p → s) to the 2366 (12+) keV unbound state. Above Ep = 1 MeV, the observed excitation functions are well reproduced by the direct capture theory to unbound states (bremsstrahlung theory). Below Ep = 1 MeV, i.e., Ep → 457 keV, the theory diverges in contrast to observation. This discrepancy is well known in bremsstrahlung theory as the “infrared problem”. From the observed direct capture cross sections at Ep ? 1 MeV, a spectroscopic factor of C2S(l = 0) = 1.02 ± 0.15 has been found for the 2366 (12+) keV unbound state. A search for direct capture transitions to the 3512 (32?)and 3547 (52+) keV unbound states resulted in upper limits of C2S(l = 1) ≦ 0.5 and C2S(l = 2) ? 1.0, respectively. The results are compared with available stripping data as well as shell-model calculations. The astrophysical aspect of the 12C(p, γ0)13N reaction also is discussed.  相似文献   

6.
Excitation functions of the 15N(p, γ)16O proton capture reaction have been obtained at θγ = 45° and Ep = 150–2500 keV. Below Ep = 400 keV, the reaction is dominated by capture into the ground state of 16O. The observed excitation function for the latter process can be explained if, in addition to the two well-known Jπ = 1? resonances at Ep = 338 and 1028 keV, a direct radiative capture process (DC → 0) is included in the analysis. The direct capture component in the capture reaction is enhanced through interference effects on the tails of the two resonances. From the observed direct capture cross section, a single-particle spectroscopic factor of C2S(1p) = 1.8 ± 0.4 has been deduced for the ground state in 16O. The extrapolated astrophysical S-factor of S(0) = 64 ± 6 keV · b for the 15N(p, γ0)16O reaction is a factor of 2.5 larger than previously reported. This result amplifies the role of the oxygen side cycle in the CNO hydrogen burning process.The observed excitation function of the 15N(p, α1γ1)12C reaction at Ep = 150 – 2500 keV shows that this reaction makes a negligible contribution to hydrogen burning at stellar energies [S(0) ≈ 0.1 keV · b] compared to 15N(p, γ0)16O and15N(p, αo)12C.  相似文献   

7.
From the angular distributions of γ-rays emitted by oriented 129gTe and 129mTe nuclei implanted in iron by isotope separator, unique spin assignments could be made for the excited states of 129I at 487.4 keV (52+), 696.0 keV (112+), 729.6 keV (92+), 768.9 keV (72+), 1050.4 keV (72+) and 1111.8 keV (52+). In addition, E2/M1 amplitude ratios for the following 129I γ-rays (energies are in keV) are derived: δ(459.6) = ?(0.076+0.037?0.148); δ(487.4) = 0.50+0.17?0.10 or δ? = 0.35+0.15?0.09; δ(556.7) = 0.06±0.02 or δ? = ?(0.10±0.02); δ(624.4) = 0.10±0.26 or δ? > 0.4; the 696.0 keV γ-ray is pure E2; δ(729.6) = ?(0.34±0.06) or δ?1 = 0.55±0.05; δ(741.1) = ?(0.27±0.10) or δ?1 = ?(0.43±0.12); δ(817.2) = 0.46±0.04 or δ?1 =0.20±0.03 if Iπ (845 keV) = 72+; δ(1022.6) = ?(0.02 ±0.02) or δ?1 = ?(0.23±0.02); δ(1084) = 0.56 +0.04?0.14; δ(1111.8) = 0.06±0.05 or δ?1 = ?(0.08±0.05). The anisotropy of the 531.8 keV γ-ray excludes 12+ as a possible spin assignment for the 559.6 keV level, so that no 12+ level is fed in the decay from 129Te. Anisotropies for the 209, 250.7, 278.4 and 281.1 keV γ-rays are also measured. Comparison of the level scheme is made with theoretical predictions from both the pairing-plus-quadrupole model and the intermediate coupling unified model.  相似文献   

8.
The F2(2) ← F1(2) and F2(2) ← F1(1) transitions of the J = 7 levels of the ground state of CH4 have been observed by infrared-radio frequency double resonance using the 3.39 μ HeNe laser line. The transition frequencies are 423.02 ± 0.02 MHz and 1246.55 ± 0.02 MHz, respectively. Using these frequencies and the splitting of the E and F2 levels of the J = 2 state calculated from the molecular beam magnetic resonance spectra of Ozier, the centrifugal distortion constants are derived to be Dt = 132933 ± 10 Hz, H4t = ? 16.65 ± 0.2 Hz, and H6t = 10 ± 1 Hz. The J = 15 E(1)E(2) microwave transition is predicted as 14150 ± 9 MHz.  相似文献   

9.
Excitation functions for the 24Mg(p, γ)25Al capture reaction have been obtained for the beam energy range Ep = 0.2–2.3 MeV. The analysis of these data revealed the presence of the direct capture process to the low-lying states in 25Al at Ex(Jπ) = 0(52+), 452(12+), 945(32+), 2485(12+) and 3062 keV (32?). The presence of the weaker direct capture transitions is manifested through interference effects on the tails of the two broad resonances at Ep = 823 and 1623 keV. The deduced spectroscopic factors for these final states in 25Al are compared with the corresponding values from stripping data as well as model calculations. An astrophysical S-factor of S(0) ≈ 30 keV· b for this reaction has been obtained.  相似文献   

10.
Spectra up to 25 MeV excitation in 16O have been obtained from 12C(6Li, d) at 42 MeV bombarding energy. Angular distributions have been measured for ten states, including two Jπ = 1? states of astrophysical interest, and appear to be mostly direct α-transfer. In addition, data for 16(6Li, d)20Ne(g.s.) and 20Ne1(2+) have been obtained. Excitation energies and widths have been extracted for states in 16O, including several states at Ex > 15 MeV. Alpha spectroscopic factors, Sα, and reduced α-widths, γ2α and θ2α have been deduced for levels in 16O and 20Ne and compared with theoretical predictions. The Jπ = 1? levels in 16O at 7.12 and 9.6 MeV excitation appear to have comparable Sα and γ2α values, viz. γ2α (7.12 MeV)γ2α (9.6 MeV) = 0.6+1.7?0.3. Both states have apparent Sα and γ2α values smaller than that for the Jπ = 2+ “α-cluster” state at 6.9 MeV however. Furthermore, the observed line shape for the Jα = 1?, 9.6 MeV level indicates Γc.m. = 400 ± 50 keV, which is substantially less than the accepted width for this level Γc.m. = 510±60 keV). The possible implications of these results for stellar helium burning calculations are discussed.  相似文献   

11.
Energy levels of 85Rb and 87Rb have been studied via de-excitation γ-rays following Coulomb excitation with 35Cl ions. In addition to the known negative-parity states at 151.2 keV and 868.2 keV in 85Rb, two states at 281.0 keV and 731.8 keV have been found with fourγ-ray transitions of 129.8, 281.0, 450.8 and 731.8 keV. Only one Coulomb excited state at 402.6 keV in 87Rb has been observed. The B(E2↑) values (in units e2 · b2) have been determined as 0.0035±0.0004 (151.2 keV), 0.0016±0.0002 (281.0 keV), 0.0101 ±0.0010 (731.8 keV), and 0.036±0.004 (868.2 keV) for the states in 85Rb, and as 0.0054±0.0006 (402.6 keV) for the state in 87Rb. The mean lifetimes of the 731.8 keV and 868.2 keV states have been measured by the Doppler shift attenuation method as 6.4±0.7 psec and 4.2±0.5 psec respectively. Angular distribution measurements allow unique spin and parity assignments of 12? and 32? to the 281.0 keV and 731.8 keV levels respectively. The spin and parity of the 868.2 keV level has been restricted to 52? or 72?.  相似文献   

12.
High spin states of 57Co have been studied via prompt γ-ray spectroscopy in the reactions 48Ti(12C, p2n) and 54Fe(α, p) at 26–48 MeV and 12–24 MeV, respectively. The energies and decay modes of these levels were determined from the analysis of γ-ray singles and γ-γ coincidence spectra, excitation functions, angular distributions and correlations. The relevant lifetimes were measured by the Doppler-shift attenuation method. The new levels established in this work are at 4037, 4814 and 5918 keV with the most probable Jπ assignment of 152?, if 172? and 192?, respectively. The previously known level at 2524 keV was assigned to have Jπ = 132?. These together with the known 92?(1224 keV) and 112?(1690 keV) levels constitute the yrast states of 57Co. The measured lifetimes of the above six levels are (in order of increasing energies) 0.085±0.030, 0.32±0.10, 0.16±0.06, 0.10?0.07+0.06, 1.5?0.54 and 0.17?0.07+0.08 ps, respectively. Comparisons with some theoretical calculations are presented.  相似文献   

13.
The anisotropies of the 177, 326, and 503 keV γ-transitions between negative parity states of 131Xe have been remeasured in the decay of oriented 131I nuclei. In addition the linear polarization of the 503 keV radiation has been determined with a Compton polarimeter consisting of two Ge(Li) detectors. A combined analysis of the reported experiment and earlier internal conversion and angular distribution data yields the unique assignments 92?and72? for the levels at 341 and 667 keV. The E2M1 mixing ratios of the 177 and 326 keV transitions are δ(177) = ?4.5 ± 1.5 and δ(326) = ?4.4 ± 1.6. The intensity of the L = 2 component in the first forbidden β-decay to the 667 keV level is at most 60 %.  相似文献   

14.
The results of integral precession measurements are reported for 32+ and 52+ excited states in 123,125Te. The measurements were made using the ion implantation perturbed angular correlation technique by recoiling the excited nuclei into polarized iron. The measured mean lifetimes and g-factors are: 123Te (440 keV, 32+) τ = 39±4 ps, g = 0.34 ± 0.06; (505 keV, 52+) τ = 26±3 ps, g = 0.04±0.025; and 125Te(443 keV, 32+) ρ = 27±3.3 ps, g = 0.39±0.06; (464 keV, 52+) g = 0.12±0.04. The results are compared with theoretical predictions.  相似文献   

15.
The yield curve of the reaction 34S(p, γ)35Cl has been measured over the energy range Ep = 1.95–2.91 MeV. Proton energies and strengths of 84 resonances are given. The decay schemes of 38 selected resonances have been studied, and for these branching ratios and spin limits are presented. The proton energy of the well known Jπ = 72? analogue resonance has been measured as Ep = 1211.45 ± 0.09 keV. The reaction Q-value is Q = 6371.6 ± 0.4 keV.  相似文献   

16.
A high-accuracy investigation of the level scheme of 47V has been performed using the 46Ti(p, γ)47V reaction. The γ-decay schemes of the strong (p, γ) resonances at Ep = 1546, 1549, 1565 and 1572 keV lead to 17 new energy levels in 47V with excitation energies between 2.7 and 5.1 MeV. From the (p,γ) angular distributions mixing ratios of the primary γ-transitions and Jπ values of the resonances and of many states populated in the γ-decay have been determined. The total width of the Ep = 1549, 1565 and 1572 keV resonances for γ-decay are found to be Γγ = 0.12, 0.15 and 0.03 eV, respectively. The Q-value of the 46Ti(p,γ)47V reaction is found to be 5168.6 keV. The two resonances at Ep = 1549 and 1565 keV, which have Jπ = 32?, are interpreted as fine structure components of the analogue state of the E1 = 2.545 MeV Jπ = 32? level in 47Ti while the (72) resonance at Ep = 1546 keV might correspond to the E1 = 2.615 MeV72? parent state in 47Ti. The analogue-antianalogue M1 transition strength of the split 32? analogue state is 0.01 single-particle units and fits well into our systematics of IAS → AIAS transitions in fp-shell nuclei.  相似文献   

17.
The g-factor of the 480 ns, 9? isomer at 2.237 MeV in 200Pb was measured by the time-differential perturbed angular distribution method. The result, g = ?0.0285±0.0011 confirms the rather pure (f52?1i132?1) quasiparticle structure of this state. Half-lives of 480±20 ns, 43±3 ns and 42±4 ns have been measured for the 2237 keV 9?, 2154 keV 7? states in 200Pb and the 2208 keV state in 202Pb, respectively; E2 transitions and g-factors of negative-parity states in even, neutron-deficient Pb isotopes are discussed.  相似文献   

18.
The reaction 12C(7Li, t)16O has been studied at E(7Li) = 34 MeV with the LASL tandem accelerator and QDDD magnetic spectrometer. Angular distributions to levels with Ex < 11 MeV have been obtained from 0° to 90°, including 0°. The results have been analyzed with finite-range distorted-wave Born approximation theory. The α-particle spectroscopic factors and reduced widths obtained are compared with those calculated with group theory (SU(3)) and other models. The analysis of data for the 7.1 and 9.6 MeV Jπ = 1? levels, which are of great importance in stellar helium buring, yields a ratio, R, of dimensionless reduced α-widths θ2a(7.1 MeV)θ2a(9.6 MeV) = 0.35b ± 0.13. The observed line width of the 9.6 MeV level (Γc.m. = 390 ± 60 keV) is less than the accepted value (Γc.m. = 510 ± 60 keV) and implies θ2a(9.6 MeV) ≈ 0.6. These results as well as data for the 6.92 MeV Jπ = 2+ and 10.35 MeV Jπ = 4+ “α-cluster” states indicate 0.09 < θ2a(7.1 MeV) < 0.33 with a mean value θ2a(7.1 MeV) = 0.14 ± 0.04. The implication for stellar helium burning is discussed.  相似文献   

19.
We report the first observation of the decay ?′→?π+π?l+l?π+π?. The 7 events seen yield a branching ratio B(?′→+π?)=(19±8)%. A consistent value of B=(26±13)% is obtained from the charged multiplicities of the ?′ and ? decays. Using these values we deduce Γtot(?′)=(31+10?8) keV and Bee(?′)=(1.8±0.5)%. Furthermore we estimate Γ(?′→gg?)=(10±5) keV in agreement with QCD predictions using vector gluons while one would expect 100 keV with scalar gluons.  相似文献   

20.
Levels in 42Ti up to 4 MeV have been investigated using the 40Ca(3He, n)42Ti reaction and a neutron time-of-flight method. Using the DSA method, lifetimes of 750±300, > 200, 350±250, > 2000 and < 250 fs have been measured for levels at Ex = 1.56, 1.85, 2.40, 2.68 and 3.74 MeV respectively. The level at Ex = 3043.0±1.5 keV is tentatively identified as the 6+ member of the (f72)2 configuration, and its mean life has been measured as 26±5 ns by a direct timing method. Using isospin formalism, transition strengths are compared with theoretical and experimental values for 42Ca and 42Sc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号