首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Differential cross sections for 87Sr(d, t)86Sr transitions to the (1g92)?2 states of 86Sr were obtained with the Pittsburgh 18 MeV deuteron beam and the Enge split-pole spectrograph. States of 86Sr up to 3.82 MeV in excitation were studied with a total resolution of 12 keV. Successful distorted-wave Born approximation (DWBA) predictions for 87Sr(d, t) 86Sr angular distributions permitted the extraction of l-values and spectroscopic strengths. The sum-rule value agrees with the observed value for the (1g92)?2 configuration. The observed g92 strength is spread over 13 states. Contrary to an earlier interpretation, the 0+ ground state is found to contain only 65% of the (g92)20+ strength. Similarly, the full 4+ strength is not located in a single state. The new data change the interpretation of the (g92)?2 spectrum of 86Sr. They significantly alter the deduced low-spin matrix elements and bring them into much closer agreement with those derived from 88Y. Several new negative-parity states dominated by l = 1 orbital angular momentum transfer have also been identified.  相似文献   

2.
A shell-model calculation of the N = 51, 39 ≦ Z ≦ 42 nuclei is presented. The 88Sr nucleus is assumed to be an inert closed core. The extra-core protons are restricted to the (2p12, 1g92) configurations, and the active neutron is allowed to occupy the 2d52, 3s12, 2d32 and 1g72 orbits. The proton-proton effective interaction is directly taken from the previous analysis on the energy levels for N = 50 isotones by Ball et al. The proton-neutron effective interaction is assumed to be of the form of the surface δ-interaction. The energy spectra are calculated from a least-squares fit to the experimental data, varying the T = 0 and T = 1 strengths of the surface δ-interaction. Spectroscopic factors, E2 transition rates and two-body matrix elements are also calculated and compared with the observed values and the previous theoretical results.  相似文献   

3.
The γ-decay of the deeply-bound hole states in 111Sn has been investigated at 32 MeV incident energy by means of the 112Sn(3He, αγ) reaction. The α-particles emitted near 0° were detected in a Si counter located at the image plan of the superconducting solenoidal spectrometer SOLENO. The γ-rays in coincidence with the α-particles were detected by two Ge(Li) detectors located at 90° and 142° with respect to the beam direction, respectively. Energies, spins and decay schemes have been established for the low-lying states up to 2.5 MeV excitation energy in 111Sn. The γ-decay of the broad bump, located around 4.2 MeV and previously attributed to neutron pick-up from the inner 1g92, 2p12, and 2p32 neutron. Subshells, reveals the importance of quasiparticle-phonon m the spreading mechanism of the inner-hole strengths. The 1g92 and 2p strength functions have been deduced from the α-decay of the enhanced structures (3 ≦ Ex≦ 8 MeV). They are compared to the ones measured in previous inclusive neutron pick-up experiments and to those calculated in the framework of the quasiparticle-phonon nuclear model.  相似文献   

4.
The cross section for the 15N(p, α0)12C reaction has been measured at θlab = 135° over the proton energy range 93 ≦ Ep ≦ 418 keV. The results are in good agreement with the less precise but much earlier measurements of Schardt, Fowler and Lauritsen (1952). An analysis of the present data in terms of a two-level calculation including the 338 keV (1?) and 1028 keV (1?) resonances determines a zero-energy intercept for the astrophysical S-factor of S(0) = 78 ± 6 MeV · b.  相似文献   

5.
The g-factors of the 10+ isomeric states in 194Hg and 196Hg have been measured using the in beam IPAD method. The results g(194Hg) = ?0.24(4) and g(196Hg) = ?0.18(9) are in agreement with the value expected for an (i132?2) neutron satructure and clearly contradict the previous assignment as (h112?2) proton configurations. Cranking model calculations show that the neutron excitation energies in the rotating frame agree satisfactorily with the experimental energies and that the proton excitations are expected ≈2 MeV above the experimental yrast line  相似文献   

6.
Inelastic proton scattering on 206Pb, 207Pb and 208Pb through isobaric analog resonances has been used to study neutron particle-hole excitations with large ground-state γ-branches in these Pb isotopes. Relative (p, p′) cross sections at 90° are extracted for structures selectively excited on the d52, s12and d32?g72 resonances. Interpretation of excitations is 206Pb and 207 Pb in terms of coupling to states in 208Pb is discussed. Branching ratios for 1?states in 208Pb at 4.84, 5.29, 5.94 and 6.31 MeV and the 12+ state in 207Pb at 4.63 MeV are deduced.  相似文献   

7.
Total cross sections for the 16O(p, α0)13N reaction have been measured by observation of the positron decay of the residual 13N nuclei. These cross sections, covering the c.m. energy range 5.4 ≦ E ≦ 9.9 MeV, allow determination of reaction rates of astrophysical interest at temperatures in the neighborhood of 4 × 109°K.  相似文献   

8.
Absolute cross sections are presented for the reactions 37Cl(α, γ)41K for 2.90 MeV ≦ Elabα ≦ 5.23 MeV, 62Ni(α, γ)66Znfor 5.07 MeV ≦ Eα?2lab ≦ 8.64 MeV, 62Ni(α, n)65Zn for energies near the (α, n0) threshold at Eαlab = 6.90 MeV up to 8.76 MeV, 64Ni(α, γ)68Zn for 4.50 ≦ Eαlab ≦ 7.45 MeV, and for 64Ni(α, n)67N from Eαlab = 5.30 MeV up to Eα = 7.45 MeV. Substantial competition cusps were observed in the excitation function for all three (α, γ) reactions. The data were found to be in reasonable agreement with the predictions of the current versions of global Hauser-Feshbach models used in nucleosynthesis calculations. Including width fluctuation corrections and realistic neutron strength functions generally improves the ability of the models to predict the depth of the (α, γ) competition cusps; the depths of the predicted (α,γ) cusps are insensitive to the degree of isospin mixing. Taken together with studies of competition effects in proton-induced reactions, the present data confirm the importance of width fluctuation and strength function effects, and indicate essentially complete isospin mixing between T< and T> states in the compound nucleus.  相似文献   

9.
The intrinsic structure of 168Tm has been studied using the (3He, d) and (α, t) proton stripping reactions as well as the (d, t) and (3He, α) neutron pick-up reactions. The beams of 24 MeV 3He particles, 25 MeV α-particles and 12 MeV deuterons were obtained from the McMaster tandem Van de Graaff accelerator. The reaction products were analyzed with an Enge-type magnetic spectrograph and detected with photographic emulsions. The spectra have been interpreted in terms of the coupling of an odd proton and an odd neutron, each moving independently in a spheroidal potential, which gives rise to intrinsic two-quasiparticle states with K = ¦Ω1±Ω2¦. The identification of the intrinsic states was made by comparing the experimental cross-section patterns with those predicted with the aid of Coriolis coupling and distorted-wave Born approximation (DWBA) calculations. Rotational bands superimposed on the Kπ = 3+ and Kπ = 4+, {72+ [633]n±12+ [411]p} configurations, the first of which is the ground state, ha been observed in the spectra of all four reactions. New assignments have been made for configurations resulting from coupling the 12? [541], 72+ [404], 54+ [402] and 12? [530] p to the 72+ [633] neutron state. The neutron pick-up measurements confirmed the earlier assignments based on (d, t) reaction studies and suggested tentative assignments for the {12+ [400]n±12+ [411]p} and {32+ [402]n±12+ [411]p}  相似文献   

10.
Wave functions of low-lying states in 86Sr have been calculated in a model space including 1g92, 2p12, 2p32 sub-shells but neglecting the proton-neutron residual interaction. These wave functions have been tested by the 89Y(p, α)86Sr reaction at E = 35 MeV by applying a DWBA analysis with microscopic form factors.  相似文献   

11.
Backbending in (at least the first half of) the rare earth nuclei seems to be determined by the alignment of an i132 neutron pair. This is supported by the disappearance of backbending due to the blocking of an i132 level by an odd neutron for example in 165Yb. Contrary to expectations backbending disappears also by adding an odd h92,proton to 70166Yb in 71167Lu for this state (but is present if the odd proton is in the g72 level). A theory is presented which explains the odd neutron and the odd proton nuclei. It turns out that the odd proton in 167Lu serves only as a type of catalyst for the alignment of an i132 neutron pair. The odd proton changes the deformation and moves the Fermi surface nearer (g72) or farther away (h92) from the nearest i132 neutron level. In one case one finds backbending and in the other case no backbending in 167Lu.  相似文献   

12.
The spectrum seen in single neutron pickup leading to the doubly odd nucleus 84Rb is remarkably clean, with only five levels populated by l = 4 and six by l = 1 transitions. A simple 2J+1 weighting for the l = 4 data, combined with previous information on 84Rb, allowed the Jπ = 2?–7? states of the (vg92?3? πf52?3) multiplet to be identified. These data are used to determine the two-hole πf52?1-vg92? interaction matrix elements.  相似文献   

13.
In the framework of coloured quael we obtain detailed predictions for the q2 dependence of the structure functions of the proton and the neutron and the σνν ratio.  相似文献   

14.
In order to resolve the controversy concerning the existence of an 868 keV γ-transition in the decay of 65d 85sSr and to determine the electron capture decay energy, radiochemically separated sources, Ge(Li), Ge(Li)-NaI(Tl), and NaI(Tl)-NaI(Tl) spectrometers have been used for singles and (X-ray-γ and γ-γ coincidence measurements. A γ-ray at 868.5±0.5 keV decaying with a 65±5 d half-life was conclusively identified in 85gSr decay. From measurements of the ratio Pκ(868.5)Pκ(514) of K-capture probabilities by (KX-ray-γ coincidences, a value of QEC was determined for the EC decay feeding the 868.5 keV transition. Thus, a level in 85Rb is established at 868.5 keV, and an upper limit of 0.45 μsec is set on its lifetime.  相似文献   

15.
High-spin states in 195, 197Tl have been populated with (α, xn) reactions and studied by means of in-beam γ-ray and e? spectroscopic methods. Complementary studies of the decay of 195, 197Pb to 195, 197Tl have been carried out. Several new features have been observed in these nuclei. The 92? bands of 195, 197T1. extended to 272(?) and 292(?), respectively, show a quenching of energy spacings between the 232?, 252?, 272(? and 292(? states. This has been interpreted as resulting from the coupling of a h92 proton to the (πh?2112)8+, 10+ configurations in the core nuclei 194, 196Hg. Furthermore, positive-parity bands based on 152+ states were established up to the 352(+) and 292(+) states in 195, 197Tl respectively. Probably these bands originate from the coupling of a h92 proton to a broken neutron pair. This pair consists of a rotation-aligned i132 neutron and a low-j neutron in the P12, P32 or f52 shell. It is known to constitute the 5? bands in 194, 196Hg.  相似文献   

16.
The first results are reported on the Pn values obtained with the recoil focussing parabolatype mass separator for unslowed fission products Lohengrin installed at the Grenoble high flux reactor. The mass chains studied were 90, 91, 93, 94, 95, 99, 134, 137, 138 and 139. Both the neutron and the β activities were measured simultaneously. The technique used to measure the neutron and the β activities and the method of analyzing the experimental data are discussed in detail. The present work led to: (i) three new periods corresponding to the new isotopes of selenium (91Se, T12 = 0.27±0.05 sec), strontium (99Sr, 0.6±0.2 sec) and telurium (138Te, 1.3±0.3 sec); (ii) accurate periods of 99Y(T12 = 1.45±0.22 sec) and134Sn (0.7±0.2 sec); (iii) four new delayed neutron precursors consisting of 91Se, 94Kr, 99Sr and 138Te; (iv) six new Pn values corresponding to the precursors 91Se (Pn = (21±10)%), 94Kr ((5.7±2.2)%), 99Sr ((3.4±2.4)%), 99Y ((1.2±0.8)%), 134Sn ((17±13)%) and138Te ((6.3±2.1)%); (v) a precise Pn value of the precursor 137Te ((2.5±0.5)%); (vi) a redetermination of the Pn values of the precursors 90, 91Br, 93Kr, 93, 94, 95Rb and 137, 138, 139I. The results of this work are discussed and compared with the existing data. The low level sensitivity of the present detection system is determined to be Pn(m)Yq(m) ? 0.4 × 10?6n/f (where Yq(m) is the cumulative yield for the mass m and the ionic charge q).  相似文献   

17.
The 146, 148Nd(α, χn) and 148, 150Nd(3He, χn) reactions at Eα = 20–43 MeV and E3He = 19–27 MeV, are used to study excited states in the 149Sm86 and 149Sm87 nucleides and consequently the low-spin odd-parity excitation. The mixing ratios and multipolarities of the most prominent transitions are deduced from the combined evidence of angular distribution and electron conversion data. The spin-parity assignments for most of the levels observed are established. In 148Sm the ground state band extending to Iπ = 10+ is predominantly populated. A negative-parity odd-spin band extending from Iπ = 3?through 11? is also observed. The bands in 148Sm are interpreted within the framework of the interacting boson approximation model. In 149Sm positive-parity levels with spin up to 252 and negative-parity levels with spins up to 212 are observed. The predominant γ-decay proceeds via transitions associated with i132, h92, f72 and h112 intrinsic configurations. The branching ratios B(E1)/B(E2) are calculated and compared in both 148Sm and 149Sm nucleides. The B(E1)/B(E2) dependence on the value of Z for some N = 86 (as well as 88 and 84) isotones showing a minimum of Z = 64 was noted. A 4 ns high-spin isomer mainly decaying into the positive-parity band based on the i132 state in 149Sm is found. Experimental evidence is presented to interprete the 12+, 152+, … and 92?, 132?, …, ΔI = 2, sequences in 149Sm as arising from the coupling of an h92 neutron to the octupole and quadrupole modes of the 148Sm core nucleus. The absolute reaction cross sections for the 146, 148, 150Nd(3He, χn) reactions have been determined for different bombarding energies. The mixing of the f72 and h92 shells is discussed in the framework of an axial-particle-rotor model calculation.  相似文献   

18.
Nanosecond lifetimes of several states in 147Nd have been studied using the reaction 146Nd(d, pγ)147Nd with 10 MeV deuterons. The following lifetimes were observed: the 72? level at 49.9 keV, 2.5±0.5 ns; the 52? level at 127.9 keV, ≦ 0.8 ns; the 92? level at 190.3 keV, 1.1±0.3 ns and the 12? level at 214.6 keV, 5.8±0.8 ns. The wave functions of the states were constructed using an axial particle-plus-rotor model. The free parameters used are compared to the systematics observed in the neighbouring heavier N = 87 isotones as well as in the N = 89 and 91 isotones. Transition rates within the f72 and h92 based excitations, separately, are reasonably well reproduced, but the connecting transitions indicate too strong a mixing of the shells in the calculation.  相似文献   

19.
The results of high-resolution studies of the 91Zr(d, p) reaction at Ed = 12 MeV and the 90Zr(t, p) reaction at Et = 11.85 MeV are presented. Absolute cross sections have been measured for both reactions and (d, p) spectroscopic factors determined. A comparison of these results with earlier data has been made, and although many of the previous assignments have been confirmed, many new features concerning the structure of 92Zr have been discovered. Shell-model calculations have been performed for 91Zr and 92Zr using a neutron space which includes the 2d52, 3s12, 2d32, 1g72 and 1h112 orbits and a proton space comprising the 1g92 and 2p12 orbits. Realistic proton-neutron and neutron-neutron interactions based on the Sussex matrix elements were used in the calculations. Spectroscopic factors have been calculated for the 90Zr(d, p) and 91Zr(d, p) reactions and cross sections calculated for the 90Zr(t, p) reaction. In general, good agreement between the theoretical and the experimental results has been obtained.  相似文献   

20.
Data for the 14C(3He, d)15N and 14C(t, 4He)13B reactions are compared to DWBA calculations to measure the spectroscopic factors for p12andp32 proton transitions. Good fits are found for the stripping data, as well as to similar stripping data on 12C. These results lower the previous value for proton p32 hole strength in 14C by a factor of two, indicating that the neutron closure of the p-shell has provided a very good proton closed shell at 14C. Stripping results to low-lying positive parity states in 15N are interpreted within a Nilsson scheme, which reproduces the experimental results, but which requires a large deformation for the s-d orbitals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号