首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The R? CH2? HO…H? X (R = SCl, Cl, SH, NO2, OMe, CHO, CN, C2H5, CH3, H; X = F, Cl, Br) complexes are considered here as the interest sample for the consideration of different measures of H‐bond strength. The intermolecular interaction energies are predicted by using MP2/6‐31++G(d,p) and B3LYP/6‐31++G(d,p) methods with basis set superposition error and zero‐point energy corrections. The results showed that intermolecular hydrogen bonds for complexes with HF are stronger than such interactions in complexes with HCl and HBr. Quantum theory of “Atoms in Molecules” and natural bond orbitals method were applied to analyzed H‐bond interactions. The gas phase thermodynamic properties of complexes were predicted using quantum mechanical computations. The obtained results showed a strong influence of the R and X substituents on the thermodynamic properties of complexes. Numerous correlations between topological, geometrical, thermodynamic properties and energetic parameters were also found. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
Intramolecular H‐bonds existing for derivatives of 3‐imino‐propenylamine have been studied using the B3LYP/6‐311++G** level of theory. The nature of these interactions, known as resonance‐assisted hydrogen bonds, has been discussed. Vibrational frequencies for α‐derivatives were calculated at the same level of theory. The topological properties of the electron density distributions for N? H···N intramolecular bridges have been analyzed in terms of the Bader theory of atoms in molecules (AIM). Calculation for 3‐imino‐propenylamine derivatives in water solution were also carried out at B3LYP/6‐311++G** level of theory. Finally, the analysis of hydrogen bond in this molecule and their derivatives by quantum theory of natural bond orbital methods fairly support the ab initio results. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

3.
According to the density functional theory calculations, the X···H···N (X?N, O) intramolecular bifurcated (three‐centered) hydrogen bond with one hydrogen donor and two hydrogen acceptors causes a significant decrease of the 1hJ(N,H) and 2hJ(N,N) coupling constants across the N? H···N hydrogen bond and an increase of the 1J(N,H) coupling constant across the N? H covalent bond in the 2,5‐disubsituted pyrroles. This occurs due to a weakening of the N? H···N hydrogen bridge resulting in a lengthening of the N···H distance and a decrease of the hydrogen bond angle at the bifurcated hydrogen bond formation. The gauge‐independent atomic orbital calculations of the shielding constants suggest that a weakening of the N? H···N hydrogen bridge in case of the three‐centered hydrogen bond yields a shielding of the bridge proton and deshielding of the acceptor nitrogen atom. The atoms‐in‐molecules analysis shows that an attenuation of the 1hJ(N,H) and 2hJ(N,N) couplings in the compounds with bifurcated hydrogen bond is connected with a decrease of the electron density ρH···N at the hydrogen bond critical point and Laplacian of this electron density ?2ρH···N. The natural bond orbital analysis suggests that the additional N? H···X interaction partly inhibits the charge transfer from the nitrogen lone pair to the σ*N? H antibonding orbital across hydrogen bond weakening of the 1hJ(N,H) and 2hJ(N,N) trans‐hydrogen bond couplings through Fermi‐contact mechanism. An increase of the nitrogen s‐character percentage of the N? H bond in consequence of the bifurcated hydrogen bonding leads to an increase of the 1J(N,H) coupling constant across the N? H covalent bond and deshielding of the hydrogen donor nitrogen atom. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Density functional calculations with Beck's three‐parameter hybrid method using the correlation functional of Lee, Yang, and Parr (B3LYP) were carried out for investigation of the intramolecular hydrogen bond strength in Nitroso‐oxime methane and its derivatives. Also, vibrational frequencies for them were calculated at the same level of theory. The π‐electron delocalization parameter (Q) and as a geometrical indicator of a local aromaticity, the geometry‐based harmonic oscillator measure of aromaticity index has been applied. Additionally, the linear correlation coefficients between substituent constants and selected parameters in R position have calculated. The obtained results show that the hydrogen bond strength is mainly governed by the resonance variations inside the chelate ring induced by the substituent groups. The topological properties of the electron density distributions for O? H ··· O intramolecular bridges have been analyzed in terms of the Bader theory of atoms in molecules (AIM). Correlations between the H‐bond strength and topological parameters have been also studied. The electron density (ρ) and Laplacian (?2ρ) properties, estimated by AIM calculations, show that O ··· H bond have low ρ and negative (?2ρ) values (consistent with covalent character of the HBs), whereas O? H bond have positive (?2ρ) Furthermore, the analysis of hydrogen bond in this molecule and its derivatives by quantum theory of natural bond orbital (NBO) methods fairly support the ab initio results. Natural population analysis data, the electron density, and Laplacian properties as well as υ(O? H) and γ(O? H) were further used for estimation of the hydrogen bonding interactions and the forces driving their formation. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

5.
Ab initio calculations at Hartree–Fock and fourth‐order Mø ller–Plesset (MP4) correlation correction levels with 6‐31G* basis set have been performed on the epoxyethane dimer. Dimer binding energies have been corrected for the basis set superposition error (BSSE) and the zero‐point energy. The greatest corrected dimer binding energy is −8.36 kJ/mol at the MP4/6‐31G*//HF/6‐31G* level. The natural bond orbital analysis has been performed to trace the origin of the weak interactions that stabilize dimer. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 78: 94–98, 2000  相似文献   

6.
The complexes between R3Tr (Tr = B, Al, and Ga; R = H, F, Cl, and Br) and H2X (X = O, S, and Se) were theoretically studied. The interaction energies of R3Al⋯H2X and R3Ga⋯H2X are consistent with the electronegativity of the halogen atom R (R ≠ H), but an opposite dependence is found for R3B⋯H2X. The triel bond of R3Tr⋯H2X is weaker for the heavier chalcogen donor. The dependence of triel bonding strength on the triel atom is complicated, depending on the nature of R and X. The methyl substitution of H2X causes a substantial increase in the interaction energy from −5.74 kcal/mol to −22.88 kcal/mol, and its effect is relevant to the nature of Tr, X, and R groups. For the S and Se donors, the increased percentage of interaction energy is almost the same due to the methyl substitution, which is larger than that of the O analogue. In most triel-bonded complexes, electrostatic dominates and polarization has comparable contribution. However, polarization plays a dominant role in R3B⋯ and R3B⋯ (R = Cl and Br; R′ = H and Me).  相似文献   

7.
We applied density functional theory to study octyl-D-xyloside isomers in order to explain the features responsible for the liquid crystal mesophases. Compared to a glucoside, the xylose headgroup has a proton instead of the hydroxymethyl group on C5. Thus, a xyloside has a reduced headgroup volume that renders it less hydrophilic. Our results have shown that the xylose headgroup may adopt stable pyranose and furanose conformations, which may lead to different effective headgroup hydrophilicities. These features are probably responsible for forming two non-equivalent inverse micelles, which are self-assembled into a cubic discontinuous phase with a space group of Fd3m commonly found for xylosides. While different factors are responsible for controlling the relative stability of each isomer, the role of intramolecular hydrogen bonding was highlighted for the investigated single molecule. The polarisable continuum model was used to take into account the solvent effect in order to understand the molecular behaviour in very polar systems. Results from calculations carried out in gas phase were used for comparative purposes. The molecular electrostatic potential calculations for these xylolipids demonstrate sugar amphoterism, which is implicated in the heterogeneity nature of lipid self-assembly.  相似文献   

8.
HF, B3LYP, and MP2 methods with the standard basis set, 6‐311++G(d,p), were used to study various aspects of dinitrosamine. These results were compared with the outcomes of G2 and CBS‐QB3 methods. First, the conformational analysis and characterization of equilibrium conformations, especially global minima, were performed. On the basis of relative energies, we found that the dinitroso tautomers are more stable than the nitroso‐hydroxy (NH) ones. This preference is well‐interpreted in terms of tautomerization process and nitrosamine resonance. Furthermore, the nature of O? H···O intramolecular hydrogen bond (IMHB), in chelated forms of NH (NH‐11 and NH‐13) was comprehensively studied to evaluate the effect of hetero atoms (N) on the characteristic of IMHB systems. According to the results of isodesmic reaction method, the hydrogen bond energy of NH‐11 is greater than the malonaldehyde (MA) and NH‐13, whereas the electron density analysis and energy‐geometry correlation methods clearly predict that the hydrogen bond of NH‐11 is weaker than the MA. Additionally, the geometrical, atoms in molecules (AIM) and natural bond orbital's (NBO) parameters also emphasize on the MA as a chelated form with the strongest hydrogen bond. Finally, the solvent effects on the relative stability of selected dinitrosamine conformers are evaluated by different continuum (polarizable‐continuum model, isodensity polarizable continuum model, and self‐consistent isodensity polarizable continuum model), discrete and mixed solvent models. Theoretical results readily show that the potential energy surface of dinitrosamine, especially global minima, is strongly affected by the solvent. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Two novel phosphinic amides, (C6H5)2P(O)(NH?cyclo?C7H13) (I) and (C6H5)2P(O)(NH?cyclo?C6H11) (II) were synthesized and characterized by spectroscopic methods and X-ray crystallography. Both compounds crystallize in the orthorhombic chiral space group P212121 and in both structures, the N—H···O hydrogen bonds lead to one-dimensional arrangements along the a axis. The molecular geometries and vibrational frequencies of I and II were investigated with quantum chemical calculations at the B3LYP/6–311G** level of theory. Furthermore, the hydrogen bonds were studied by means of the Bader theory of atoms in molecules (AIM) and natural bond orbital (NBO) analysis.  相似文献   

10.
利用密度泛函(DFT)和自然键轨道理论(NBO)及高级电子耦合簇[CCSD(T)]和电子密度拓扑(AIM)方法,对单重态和三重态CH2与CH2CO反应的微观机理进行了研究.在B3LYP/6-311+G(d,p)水平上优化了反应通道各驻点的几何构型.在CCSD(T)/6-311+G(d,p)水平上计算了各物种的单点能量,并对总能量进行了校正.计算表明,单重态CH2与CH2CO的C-H键可发生插入反应,与C=C、C=O可发生加成反应,存在三条反应通道,产物为CO和C2H4,从能量变化和反应速控步骤能垒两方面考虑,反应II更容易发生.对反应通道中的关键点进行了自然键轨道及电子密度拓扑分析.三重态CH2与CH2CO的反应存在三条反应通道,一条是与C-H键的插入反应,另一条是三重态CH2与C=C发生加成反应,产物为CO和三重态C2H4,通道II势垒较低,更容易发生.最后一条涉及双自由基的反应活化能最大,最难发生.  相似文献   

11.
Ralf Ludwig 《Chemphyschem》2005,6(7):1369-1375
A combination of density functional calculations of molecular clusters with a quantum cluster equilibrium (QCE) model provides evidence that liquid methanol is dominated by cyclic and/or lasso structures. Only cluster populations including these structures fit the measured thermodynamic and spectroscopic properties, such as heat of vaporization, heat capacity, NMR chemical shifts, and quadrupole coupling constants. On the other hand, cluster populations comprising open-chain structures fail to reach the experimental values: the heat of vaporization is about 10 kJ mol(-1) too low, and the proton chemical shift is insufficiently downfield-shifted by about 1 ppm.  相似文献   

12.
吡啶-BH~3相互作用复合物的理论研究   总被引:2,自引:2,他引:2  
对吡啶-BH~3复合物分别用MP2/6-31+G^*和B3LYP/6-31+G^*进行理论计算以预测该复合物的构型及解离能,得到四种构型,在MP2优化构型基础上作CCSD/6-31+G^*单点能量计算以验证MP2与B3LYP结果的可靠性,然后用B3LYP作振动频率分析,计算了各构型的垂直电离势,最后用更大基组作单点能量计算和自然键轨道(NBO)分析。结果表明,N-B直接相连的构型最稳定,其解离能为141.50kJ/mol,MP2和B3LYP对N-H接近的构型结果相关较大,另外两种构型稳定性介于二者之间,解离能分别为15.18kJ/mol,14.06kJ/mol(MP2/6-31+G^*)。  相似文献   

13.
It is frequently said that hydrogen bonds (HBs) are enhanced by ionic interactions and in this article we intend to determine the degree at which this reinforcement happens. Considering our interest in the Guanidine(neutral)/Guanidinium(cation) system and its particular nature, all the possible 1:1 complexes with the Chloride(anion)/Hydrochloric acid(neutral) system have been studied at different levels of computation (B3LYP with 6-31+G* and TZVP basis sets; MP2 with 6-31+G*, 6-311++G** and aug-cc-pVDZ basis sets; CBS-QB3 and G3MP2). The nature of these interactions established in all the systems and, when possible, at all the levels of computation used in this study, has been analyzed using Atoms in Molecules and Natural Bond Orbital methodologies. By examining the interaction energy, the electron density at the bond critical bonds, the atomic energy, the charge transfer, the orbital energy, and the deformation energy we can conclude that HBs are stronger when the ionic interaction is stronger. Thus, both interactions do not work in an independent manner but one reinforces the other to different degrees depending on the nature of the charges present. Several correlations with the interaction energy have been found and a partition of the contributions of both the HB and ionic forces to the total interactions is proposed.  相似文献   

14.
The structures of the complexes generated by hexamethylenetetramine and nitric acid have been fully optimized by B3LYP method at the 6-311++G** and aug-cc-pVTZ levels. The intermolecular hydrogen-bonding interactions have been calculated by the B3LYP/6-311++G**, B3LYP/aug-cc-pVTZ, MP2(full)/6-311++G** and CCSD(T)/6-311++G** methods, respectively. The NBO (nature bond orbital), AIM (atom in molecule), temperature effect and solvation effect have been analyzed to reveal the origin of the interactions. The results indicate that the stable hydrogen-bonded complexes could be generated by hexamethylenetetramine and nitric acid. The interactions follow the order of (a)>>(e)>(b)>(c)>(d)>(f)>(g). The C-N bonds which are adjacent to the methylene involving the hydrogen bonds tend to break in the chemical reaction. Due to the exothermic process, low temperature is conducive to the formation of the composition, which tallies with the experimental result.  相似文献   

15.
In this study, the density functional theory computational method is used to investigate the encapsulation process of metformin into three types of the cyclic peptides composed of eight serine (CP1), eight glycine (CP2), and four serine‐glycine (CP3) cyclic peptides as a new model in the process of drug delivery in the gas phase. The obtained results using the B3LYP/6‐31++G (d,p) method indicate that the complexes formed are energetically favored. Furthermore, results reveal that the drug encapsulation process is typically chemisorption. The natural bonding orbital analysis shows that the intermolecular interaction of the C2 complex (metformin/CP2) is stronger than the C1 (Metformin/CP1) and C3 (Metformin/CP3) complexes due to greater total charge transfer energy, and the C1 complex is found to be the most favored complex. The theory of atoms in molecule (AIM) method is used to analyze the nature of interactions in different molecular systems. The results show the investigated cyclic peptides as effective carriers of metformin in the nanomedicine field.  相似文献   

16.
The structural and electronic parameters of the horminone molecule, an abietan diterpene quinone, were studied by means of all‐electron calculations using Hartree–Fock and density functional theory‐based methods, as implemented in the Gaussian98 program. The 6‐31G orbital basis sets were used for the C, H, O, and Mg atoms. The results allow the identification of the negative site of horminone (HM) most favorable for its binding to the Mg2+ ion. The HM–Mg2+ complex is assumed to play a significant role in the antibacterial activity. First, it penetrates the membrane cell. Then, through its interaction with rRNA, it inhibits the protein synthesis in several types of bacteria. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 93: 411–421, 2003  相似文献   

17.
The lithium bond between HMgH and LiNH2 has been predicted and characterized with quantum chemical calculations at the MP2/6‐311++G(d,p) level. Upon formation of the lithium bond, both the Mg? H and Li? N bonds are stretched. The Li? N bond undergoes a red shift, whereas the Mg? H bond exhibits a blue shift. The lithium‐bonded complex is controlled mainly by electrostatic and polarization interactions. The binding energy of HMgH with LiNH2 is computed to be 12.47 kcal/mol. The binding of the two molecules is enhanced by the substitution with the methyl group in the Li acceptor, whereas it is weakened by the replacement with whether the electron‐withdrawing group such as F, Cl, CN, NC, or the electron‐donating group (OH and HN2). A negative cooperativity is present in the ternary system of 2LiNH2 and HMgH. The polarization interaction plays an important role in the negative cooperativity. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
Nucleophilic substitution reaction between some substituted benzyl chlorides and chloride ion has been investigated by ab initio and DFT methods. New calculated energy data are in better agreement with experimental data. The electron‐withdrawing groups increase the energy barriers and the electron‐donating groups decrease them. The changes of geometrical parameters and energy data are in good agreement with the results of atoms in molecules and natural bond orbital analyses. The relationship between Hammett coefficients and energy data (and geometry parameters) has been established and the ρ constant has been calculated for this reaction. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

19.
赵理达  颜欢  李冰  闫平  管玉雷 《化学通报》2018,81(11):1033-1043
重质油中沥青质组分易发生聚沉形成团簇,严重影响重质油的加工和利用效率,但目前对于沥青质聚沉的研究较少,其机理尚不明确。本文采用理论计算对沥青质杂环模型分子间相互作用和溶剂化效应进行研究,以此为重质油沥青质聚沉现象的研究及聚沉抑制剂的研发提供一定的数据和理论支持。(1)在M062X/6-31G(d)水平上,计算得到了11种由沥青质杂环分子片段组成的二元体系的全优化稳定构型,讨论分析了构型的几何结构、NBO电荷、Mulliken重叠布居、相互作用能和分子轨道能,得到了最稳定的两种构型。(2)在B3LYP/6-31G(d)水平上,运用SMD模型对沥青质大分子在13种溶剂中进行溶剂化效应的建模和理论计算,通过对静电溶剂化自由能(ΔGelec)、非静电溶剂化自由能(ΔGnonelec)、总溶剂化自由能(ΔGsolv)的分析可知,沥青质溶解性大小的关键在于溶剂对它的远程静电作用的大小。  相似文献   

20.
The novel compounds (E)‐2‐(((4‐hydroxyphenyl)imino)methyl)phenol, Tetraphenyl (hydroxyl) imidazole and their corresponding Boron difluoride complexes were synthesized and characterized by spectroscopic techniques. Density functional theory calculations at B3LYP‐D3/6–311++G (d, p) level of theory were performed for the geometric parameters. The MEP surface studies were used to understand the behavior of molecules in terms of charge transfer and to determine how these molecules interact. We used the GIAO and the B3LYP‐D3 with a 6–311++ G (d, p) basis set to simulate the (1H‐NMR and 19F‐NMR) and the IR spectra, respectively. The corresponding calculated results are in good agreement with the experimental data. The stability of the molecule arising from hyperconjugation interaction and charge delocalization were analyzed using NBO analysis. FMOs revealed the occurrence of charge transfer within the molecule. The complexation using BF3.Et2O was also found to have remarkable effects on the electrochemical properties of the studied molecules, where (b) and (d) present lower chemical stability, higher reactivity and higher polarizability than (a) and (c), respectively. Moreover, the energy gap of (a) and (c) decreased after complexation using BF3.Et2O, indicating the reliability of the electrochemical evaluation of LUMO and HOMO energy levels. These values are the factors explaining the possible charge transfer interaction within the molecule. The absorption and emission spectra of the model compound were also simulated and compared to experimental observations in the DMF solvent. The results of DFT calculations supported the structural and spectroscopic data and confirmed the structure modification of frontier molecular orbitals for BF2 complexes as well as tunable potentials and energy levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号