首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the effort to increase the stable efficiency of thin film silicon micromorph solar cells, a silicon oxide based intermediate reflector (SOIR) layer is deposited in situ between the component cells of the tandem device. The effectiveness of the SOIR layer in increasing the photo‐carrier generation in the a‐Si:H top absorber is compared for p–i–n devices deposited on different rough, highly transparent, front ZnO layers. High haze and low doping level for the front ZnO strongly enhance the current density (Jsc) in the μc‐Si:H bottom cell whereas Jsc in the top cell is influenced by the angular distribution of the transmitted light and by the reflectivity of the SOIR related to different surface roughness. A total Jsc of 26.8 mA/cm2 and an initial conversion efficiency of 12.6% are achieved for 1.2 cm2 cells with top and bottom cell thicknesses of 300 nm and 3 μm, and without any anti‐reflective coating on the glass. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Off‐state and vertical breakdown characteristics of AlGaN/AlN/GaN high‐electron‐mobility transistors (HEMTs) on high‐resistivity (HR)‐Si substrate were investigated and analysed. Three‐terminal off‐state breakdown (BVgd) was measured as a function of gate–drain spacing (Lgd). The saturation of BVgd with Lgd is because of increased gate leakage current. HEMTs with Lgd = 6 µm exhibited a specific on‐resistance RDS[ON] of 0.45 mΩ cm2. The figure of merit (FOM = BVgd2/RDS[ON]) is as high as 2.0 × 108 V2 Ω–1 cm–2, the highest among the reported values for GaN HEMTs on Si substrate. A vertical breakdown of ~1000 V was observed on 1.2 µm thick buffer GaN/AlN grown on Si substrate. The occurrence of high breakdown voltage is due to the high quality of GaN/AlN buffer layers on Si substrate with reduced threading dislocations which has been confirmed by transmission electron microscopy (TEM). This indicates that the AlGaN/AlN/GaN HEMT with 1.2 µm thick GaN/AlN buffer on Si substrate is promising candidate for high‐power and high‐speed switching device applications. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We demonstrate the processing of a heterojunction solar cell from a purely macroporous silicon (MacPSi) absorber that is generated and separated from a monocrystalline n‐type Cz silicon wafer by means of electrochemical etching. The etching procedure results in straight pores with a diameter of (4.7 ± 0.2) µm and a distance of 8.3 µm. An intrinsic amorphous Si (a‐Si)/p+‐type a‐Si/indium tin oxide (ITO) layer stack is on the front side and an intrinsic a‐Si/n+‐type a‐Si/ITO layer stack is on the rear side. The pores are open when depositing the layers onto the 3.92 cm2‐sized cell. The conductive layers do not cause shunting through the pores. A silicon oxide layer passivates the pore walls. The energy‐conversion efficiency of the (33 ± 2) µm thick cell is 7.2%. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We present a design study of 3D photonic poly‐Si microarchitectures on 2 µm periodically textured glass substrates for application as absorber layers in crystalline Si thin‐film solar cells. Different arrays of microholes and microcones were fabricated in a low‐cost process, by combining high rate electron beam evaporation, nanoimprint technology and self‐organized solid phase crystallization. Two promising designs exhibiting strong absorption enhancement were identified by optical analysis. High angular acceptance and calculated maximum achievable short‐circuit current density of 27.6 mA/cm2 for an effective Si thickness of 1.1 µm highlight the optical potential of these microarchitectures as broadband absorbers in polycrystalline Si thin‐film solar cells.

  相似文献   


5.
Poly(vinylpyrrolidone)‐stabilized silver nanoparticles deposited onto strained‐silicon layers grown on graded Si1−xGex virtual substrates are utilized for selective amplification of the Si–Si vibration mode of strained silicon via surface‐enhanced Raman scattering spectroscopy. This solution‐based technique allows rapid, highly sensitive and accurate characterization of strained silicon whose Raman signal would usually be overshadowed by the underlying bulk SiGe Raman spectra. The analysis was performed on strained silicon samples of thickness 9, 17.5 and 42 nm using a 488 nm Ar+ micro‐Raman excitation source. The quantitative determination of strained‐silicon enhancement factors was also made. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Microcrystalline silicon‐carbide (μc‐SiC:H) films were prepared using hot wire chemical vapor deposition at low substrate temperature. The μc‐SiC:H films were employed as window layers in microcrystalline silicon (μc‐Si:H) solar cells. The short‐circuit current density (JSC) in these n‐side illuminated n–i–p cells increases with increasing the deposition time tW of the μc‐SiC:H window layer from 5 min to 60 min. The enhanced JSC is attributed to both the high transparency and an anti‐reflection effect of the μc‐SiC:H window layer. Using these favourable optical properties of the μc‐SiC:H window layer in μc‐Si:H solar cells, a JSC value of 23.8 mA/cm2 and cell efficiencies above 8.0% were achieved with an absorber layer thickness of 1 μm and a Ag back reflector. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The kesterite Cu2ZnSn(S1–xSex)4 (CZTSSe) thin film solar cell has been developed rapidly due to its excellence in structural and optical properties and its abundance in raw materials. Both vacuum‐based and solution‐based methods have been successfully employed to fabricate CZTSSe thin film solar cells. In this Letter, we report an environmentally friendly, water‐based, solution process for fabrication of high‐efficiency CZTSSe thin film solar cells. High quality CZTSSe thin film is obtained by selenization under high temperature and Se vapor. An efficiency of 6.2% is achieved on CZTSSe thin film solar cell fabricated by such water‐based solution process. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
At the National Synchrotron Radiation Research Center (NSRRC), which operates a 1.5 GeV storage ring, a dedicated small‐angle X‐ray scattering (SAXS) beamline has been installed with an in‐achromat superconducting wiggler insertion device of peak magnetic field 3.1 T. The vertical beam divergence from the X‐ray source is reduced significantly by a collimating mirror. Subsequently the beam is selectively monochromated by a double Si(111) crystal monochromator with high energy resolution (ΔE/E? 2 × 10?4) in the energy range 5–23 keV, or by a double Mo/B4C multilayer monochromator for 10–30 times higher flux (~1011 photons s?1) in the 6–15 keV range. These two monochromators are incorporated into one rotating cradle for fast exchange. The monochromated beam is focused by a toroidal mirror with 1:1 focusing for a small beam divergence and a beam size of ~0.9 mm × 0.3 mm (horizontal × vertical) at the focus point located 26.5 m from the radiation source. A plane mirror installed after the toroidal mirror is selectively used to deflect the beam downwards for grazing‐incidence SAXS (GISAXS) from liquid surfaces. Two online beam‐position monitors separated by 8 m provide an efficient feedback control for an overall beam‐position stability in the 10 µm range. The beam features measured, including the flux density, energy resolution, size and divergence, are consistent with those calculated using the ray‐tracing program SHADOW. With the deflectable beam of relatively high energy resolution and high flux, the new beamline meets the requirements for a wide range of SAXS applications, including anomalous SAXS for multiphase nanoparticles (e.g. semiconductor core‐shell quantum dots) and GISAXS from liquid surfaces.  相似文献   

9.
Large area (243.36 cm2) back‐junction passivated emitter, rear totally diffused (PERT) solar cells with laser contact opening (LCO) on n‐type mono‐like crystalline Si with efficiencies of 20.2% are presented. Boron emitters with high electrical quality (implied open circuit voltage iVOC up to 700 mV) are formed during a co‐diffusion step using SiOx:B layers. Increasing the rear metal contact coverage, we observed a decrease in fill factor (FF) instead of the expected increase due to the decrease of the back side series resistance. We show that it can be attributed to recombination centers (RCs) in the space charge region underneath the contact spots inducing an increasing second diode contribution. The presented empirical model for the RCs implemented in Synopsys Sentaurus TCAD allows for a successful reproduction of the FF, pseudo FF and VOC behaviour with contact coverage. According to this model, the RCs induced by laser ablation and subsequently evaporation of Al have a shallow exponential distribution with a characteristic length of LT = 0.2 µm and an effective surface density of N *T0 = 25 cm–1. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

10.
We report recent achievements in adapting industrially used solar cell processes on nanotextured surfaces. Nanostructures were etched into c‐Si surfaces by dry exothermic plasma‐less reaction of F species with Si in atmospheric pressure conditions and then modified using a short post‐etching process. Nanotextured multicrystalline wafers are used to prepare Al‐BSF solar cells using industrially feasible solar cell proc‐ essing steps. In comparison to the reference acidic textured solar cells, the nanostructured cells showed gain in short circuit current (Jsc) of up to 0.8 mA/cm2 and absolute gain in conversion efficiency of up to 0.3%. The best nanotextured solar cell was independently certified to reach the conversion efficiency of 18.0%. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

11.
Aluminium‐doped p‐type (Al‐p+) silicon emitters fabricated by means of a simple screen‐printing process are effectively passivated by plasma‐enhanced chemical‐vapour deposited amorphous silicon (a‐Si). We measure an emitter saturation current density of only 246 fA/cm2, which is the lowest value achieved so far for a simple screen‐printed Al‐p+ emitter on silicon. In order to demonstrate the applicability of this easy‐to‐fabricate p+ emitter to high‐efficiency silicon solar cells, we implement our passivated p+ emitter into an n+np+ solar cell structure. An independently confirmed conversion efficiency of 19.7% is achieved using n‐type phosphorus‐doped Czochralski‐grown silicon as bulk material, clearly demonstrating the high‐efficiency potential of the newly developed a‐Si passivated Al‐p+ emitter. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The present study investigates the electrical properties of transition metal oxide (TMO) emitters in dopant‐free n‐Si back contact solar cells by comparing the properties of solar cells employing three TMOs (WOx, MoOx and V2Ox) with varying electrical properties acting as p‐type contacts. The TMOs are found to induce large band bending in n‐Si, which reduces the injection level dependent interfacial recombination speed Seff and contact resistivity ρc. Among the TMO/n‐Si contacts considered, the V2Ox/n‐Si contact achieves the lowest Seff of 138 cm/s and ρc of 0.034 Ω cm2, providing the significant advantages over heavily doped a‐Si:H(p)/n‐Si contacts. The best device performance was achieved by the V2Ox/n‐Si solar cell, demonstrating an efficiency of 16.59% and an open‐circuit voltage of 610 mV relative to solar cells based on MoOx/n‐Si (15.09%, 594 mV) and WOx/n‐Si (12.44%, 539 mV). Furthermore, the present work is the first to employ WOx, V2Ox and Cs2CO3 in back contact solar cells. The fabrication process employed offers great potential for the mass production of back contact solar cells owing to simple, metal mask patterning with high alignment quality and dopant‐free steps conducted at a lower temperature.  相似文献   

13.
In this work, hydrogen plasma etching of surface oxides was successfully accomplished on thin (~100 µm) planar n‐type Czochralski silicon wafers prior to intrinsic hydrogenated amorphous silicon [a‐Si:H(i)] deposition for heterojunction solar cells, using an industrial inductively coupled plasma‐enhanced chemical vapour deposition (ICPECVD) platform. The plasma etching process is intended as a dry alternative to the conventional wet‐chemical hydrofluoric acid (HF) dip for solar cell processing. After symmetrical deposition of an a‐Si:H(i) passivation layer, high effective carrier lifetimes of up to 3.7 ms are obtained, which are equivalent to effective surface recombination velocities of 1.3 cm s–1 and an implied open‐circuit voltage (Voc) of 741 mV. The passivation quality is excellent and comparable to other high quality a‐Si:H(i) passivation. High‐resolution transmission electron microscopy shows evidence of plasma‐silicon interactions and a sub‐nanometre interfacial layer. Using electron energy‐loss spectroscopy, this layer is further investigated and confirmed to be hydrogenated suboxide layers. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

14.
Atomic‐layer‐deposited aluminum oxide (AlOx) layers are implemented between the phosphorous‐diffused n+‐emitter and the Al contact of passivated emitter and rear silicon solar cells. The increase in open‐circuit voltage Voc of 12 mV for solar cells with the Al/AlOx/n+‐Si tunnel contact compared to contacts without AlOx layer indicates contact passivation by the implemented AlOx. For the optimal AlOx layer thickness of 0.24 nm we achieve an independently confirmed energy conversion efficiency of 21.7% and a Voc of 673 mV. For AlOx thicknesses larger than 0.24 nm the tunnel probability decreases, resulting in a larger series resistance. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
A focusing system based on a polycapillary half‐lens optic has been successfully tested for transmission and fluorescence µ‐X‐ray absorption spectroscopy at a third‐generation bending‐magnet beamline equipped with a non‐fixed‐exit Si(111) monochromator. The vertical positional variations of the X‐ray beam owing to the use of a non‐fixed‐exit monochromator were shown to pose only a limited problem by using the polycapillary optic. The expected height variation for an EXAFS scan around the Fe K‐edge is approximately 200 µm on the lens input side and this was reduced to ~1 µm for the focused beam. Beam sizes (FWHM) of 12–16 µm, transmission efficiencies of 25–45% and intensity gain factors, compared with the non‐focused beam, of about 2000 were obtained in the 7–14 keV energy range for an incoming beam of 0.5 × 2 mm (vertical × horizontal). As a practical application, an As K‐edge µ‐XANES study of cucumber root and hypocotyl was performed to determine the As oxidation state in the different plant parts and to identify a possible metabolic conversion by the plant.  相似文献   

16.
Calcium carbonate (CaCO3)/iron oxide composites were synthesized through a simple one‐step impregnation procedure by mixing iron oxide nanoparticles (γ‐Fe2O3 and Fe3O4) of about 6 nm in size and CaCO3 microparticles (Φ = 2 µm–8 µm, vaterite phase). The morphology and structural properties of CaCO3, iron oxide nanoparticles and CaCO3/iron oxide composites were characterized as a function of low iron content (0 %w to 3.2 %w) by scanning electron microscopy and transmission electron microscopy, X‐ray diffraction and 57Fe Mössbauer spectrometry. The phase transformations induced by thermal treatment and laser irradiation were investigated in situ by X‐ray thermodiffraction (XRTD) and Raman spectroscopy. We have shown that the phase transformations observed by XRTD are also observed under laser irradiation as a consequence of the absorption of the laser irradiation by iron oxide nanoparticles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Results of measurements made at the SIRIUS beamline of the SOLEIL synchrotron for a new X‐ray beam position monitor based on a super‐thin single crystal of diamond grown by chemical vapor deposition (CVD) are presented. This detector is a quadrant electrode design processed on a 3 µm‐thick membrane obtained by argon–oxygen plasma etching the central area of a CVD‐grown diamond plate of 60 µm thickness. The membrane transmits more than 50% of the incident 1.3 keV energy X‐ray beam. The diamond plate was of moderate purity (~1 p.p.m. nitrogen), but the X‐ray beam induced current (XBIC) measurements nevertheless showed a photo‐charge collection efficiency approaching 100% for an electric field of 2 V µm?1, corresponding to an applied bias voltage of only 6 V. XBIC mapping of the membrane showed an inhomogeneity of more than 10% across the membrane, corresponding to the measured variation in the thickness of the diamond plate before the plasma etching process. The measured XBIC signal‐to‐dark‐current ratio of the device was greater than 105, and the X‐ray beam position resolution of the device was better than a micrometer for a 1 kHz sampling rate.  相似文献   

18.
Periodically nanopatterned Si structures have been prepared by using a nanosphere lithography technique. The formed nanopatterned structures exhibit good anti‐reflection and enhanced optical absorption characteristics. The mean surface reflectance weighted by AM1.5 solar spectrum (300–1200 nm) is as low as 5%. By depositing Si quantum dot/SiO2 multilayers (MLs) on the nanopatterned Si substrate, the optical absorption is higher than 90%, which is significantly improved compared with the same multilayers deposited on flat Si substrate. Furthermore, the prototype n‐Si/Si quantum dot/SiO2 MLs/p‐Si heterojunction solar cells has been fabricated, and it is found that the external quantum efficiency is obviously enhanced for nanopatterned cell in a wide spectral range compared with the flat cell. The corresponding short‐circuit current density is increased from 25.5 mA cm?2 for flat cell to 29.0 mA cm?2 for nano‐patterned one. The improvement of cell performance can be attributed both to the reduced light loss and the down‐shifting effect of Si quantum dots/SiO2 MLs by forming periodically nanopatterned structures.  相似文献   

19.
For polycrystalline silicon (poly‐Si) thin‐film solar cells on ~3 mm borosilicate glass, glass thinning reduces the glass absorption and light leaking to neighbouring cells; the glass texturing of the sun‐facing side suppresses reflection. In this Letter, a labour‐free wet etching method is developed to texture and thin the glass at the same time in contrast to conventionally separated labour‐intensive glass thinning and texturing processes. For 2 cm2 size poly‐Si thin‐film solar cells on glass superstrate, this wet etching successfully thins down the glass from 3 mm to 0.5 mm to check the ultimate benefit of the process and introduces a large micron texture on the sun‐facing glass surface. The process enhances Jsc by 6.3% on average, with the optimal Jsc enhancement of 8%, better than the value of 4.6% found in the literature. This process also reduces the loss in external quantum efficiency (EQE loss), which is due to light leaking to neighbouring cells, dramatically. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Plasma enhanced chemical vapor deposition (PECVD) is applied to deposit boron silicate glasses (BSG) acting as boron diffusion source during the fabrication of n‐type silicon solar cells. We characterize the resulting boron‐diffused emitter after boron drive‐in from PECVD BSG by measuring the sheet resistances Rsheet,B and saturation current densities J0,B. For process optimization, we vary the PECVD deposition parameters such as the gas flows of the precursor gases silane and diborane and the PECVD BSG layer thickness. We find an optimum gas flow ratio of SiH4/B2H6= 8% and layer thickness of 40 nm. After boron drive in from these PECVD BSG diffusion sources, a low J0,B values of 21 fA/cm2 is reached for Rsheet,B = 70 Ω/□. The optimized PECVD BSG layers together with a co‐diffusion process are implemented into the fabrication process of passivated emitter and rear totally diffused (PERT) back junction (BJ) cells on n‐type silicon. An independently confirmed energy conversion efficiency of 21.0% is achieved on 15.6 × 15.6 cm2 cell area with a simplified process flow. This is the highest efficiency reported for a co‐diffused n‐type PERT BJ cell using PECVD BSG as diffusion source. A loss analysis shows a small contribution of 0.13 mW/cm2 of the boron diffusion to the recombination loss proving the high quality of this diffusion source. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号