首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The photocatalyst B and N codoped TiO2 (B-N-TiO2) was prepared via the sol-gel method by using boric acid and ammonia as B and N precursors. The doping mode, band structure and photocatalytic mechanism of B-N-TiO2 were investigated well and elucidated in detail. B-N-TiO2 showed the narrowed band gap and thus extended the optical absorption due to interstitial N and [NOB] species in the TiO2 crystal lattice. The coexistence of interstitial N and [NOB] species in the TiO2 crystal lattice and surface NOx species allowed the more efficient utilization of visible light. Simultaneously, interstitial [NOB] and N species and surface B2O3 and NOx species facilitated the separation of photo generated electrons and holes and suppress their recombination effectively. Hence, B-N-TiO2 showed a higher photocatalytic activity than pure TiO2, N-doped TiO2 (N-TiO2) and B-doped TiO2 (B-TiO2) under both UV and visible light irradiation.  相似文献   

2.
郑树凯*  吴国浩  刘磊 《物理学报》2013,62(4):43102-043102
利用基于密度泛函理论的第一性原理对不同P掺杂形式(P替位Ti, P替位O, 间隙P)的锐钛矿相TiO2的晶格常数、电荷布居、能带结构、分态密度和吸收光谱进行了计算. 结果表明, P替位Ti时, TiO2体积减小, P替位O和间隙P的存在使TiO2的体积膨胀; 替位Ti的P和间隙P均有不同程度的氧化, 而替位O的P带有负电荷. 三种P掺杂形式均导致锐钛矿相TiO2禁带宽度的增大, 并在TiO2禁带之内引入了掺杂局域能级. P掺杂导致TiO2禁带宽度增大的程度依次为: 间隙P>P替位Ti>P替位O. 吸收光谱的计算结果表明, P替位Ti并不能增强TiO2的可见光吸收能力, 但间隙P的存在大幅提高了TiO2的可见光光吸收能力, 间隙P有可能是造成实验上P掺杂增强锐钛矿相TiO2光催化活性的重要原因. 关键词: P掺杂 2')" href="#">锐钛矿相TiO2 第一性原理  相似文献   

3.
S.H. Cheung 《Surface science》2007,601(7):1754-1762
We describe the growth and properties of well-defined epitaxial TiO2−xNx rutile for the first time. A mixed beam of atomic N and O radicals was prepared in an electron cyclotron resonance plasma source and Ti was supplied from a high-temperature effusion cell or an electron beam evaporator, depending on the required flux. A very high degree of structural quality is generally observed for films grown under optimized anion-rich conditions. N substitutes for O in the lattice, but only at the ∼1 at.% level, and is present as N3−. Epitaxial growth of TiO2 and TiO2−xNx rutile prepared under anion-rich conditions is accompanied by Ti indiffusion, leading to interstitial Ti (Tii), which is a shallow donor in rutile. Our data strongly suggest that Tii donor electrons compensate holes associated with substitutional N2− (i.e., Ti(III) + N2− → Ti(IV) + N3−), leading to highly resistive or weakly n-type, but not p-type material. Ti 2p core-level line shape analysis reveals hybridization of N and Ti, as expected for substitutional N. Ti-N hybridized states fall in the gap just above the VBM, and extend the optical absorption well into the visible.  相似文献   

4.
The structural, electronic and optical properties of tungsten-doped TiO2 have been investigated using density functional theory with plane wave basis sets and ultrasoft pseuodopotential. Substitutional W doping at Ti sites create W 5d states just below the conduction band minimum while interstitial W doping gives isolated W 5d states in the middle of forbidden region. Averaged bond lengths show that W doping at Ti sites produce minimum structural distortion as compared to the interstitial W-doped TiO2. Substitutional W-doped TiO2 has better visible light absorption compared to interstitial W-doped TiO2 and has stable configuration which provide reasonable explanation for the experimental findings. Tungsten doping in TiO2 with different doping concentrations is investigated as an enabling concept for enhancing the visible light absorption. Optical properties show that optimal W doping concentration would improve the visible light absorption. 2.08% W doping concentration gives strong visible and ultraviolet light absorption among all doped models found consistent with experiments.  相似文献   

5.
An ab initio calculation based on density functional theory is applied to study Be–N codoped ZnO and the possible complexes are discussed. The calculated results show that the substitutional N defect at the O site (NO) easily binds with the interstitial Be (Bei), rather than the substitutional Be defect at the Zn site (BeZn). This indicates that 4BeZn–NO complex is not a stable acceptor and is unlikely to form. Fortunately, Bei–3NO is of high structural stability and its transition energy is very low due to the impurity band caused by the Bei–2NO passive complex. Therefore, Bei–3NO can serve as a stable source of p-type conductivity. In addition, it is also suggested that Be–N codoped p-type ZnO can be prepared under Zn-rich condition because Bei–3NO has the lowest formation energy in this environment.  相似文献   

6.
We perform first-principles calculations to investigate the band structure, density of states, optical absorption, and the imaginary part of dielectric function of Cu, Ag, and Au-doped anatase TiO2 in 72 atoms systems. The electronic structure results show that the Cu incorporation can lead to the enhancement of d states near the uppermost of valence band, while the Ag and Au doping cause some new electronic states in band gap of TiO2. Meanwhile, it is found that the visible optical absorptions of Cu, Ag, and Au-doped TiO2, are observed by analyzing the results of optical properties, which locate in the region of 400-1000 nm. The absorption band edges of Cu, Ag, and Au-doped TiO2 shift to the long wavelength region compared with the pure TiO2. Furthermore, according to the calculated results, we propose the optical transition mechanisms of Cu, Ag, and Au-doped TiO2. Our results show that the visible light response of TiO2 can be modulated by substitutional doping of Cu, Ag, and Au.  相似文献   

7.
Nitrogen-doped titanium oxide (TiOxNy) films were prepared with ion-assisted electron-beam evaporation. The nitrogen (N) incorporated in the film is influenced by the N2 flux modulated by the N2 flow rate through an ion gun. The TiOxNy films have the absorption edge of TiO2 red-shifted to 500 nm and exhibit visible light-induced photocatalytic properties in the surface hydrophilicity and the degradation of methylene blue. The structures and states of nitrogen in the films are investigated by X-ray diffraction patterns (XRD), and X-ray photoelectron spectroscopy (XPS) and related to their visible light-induced photocatalytic properties. The results indicate that the substitutional N in anatase TiO2 can induce visible light photocatalysis. The substitutional N is readily doped by the energetic nitrogen ions from the ion gun. The best photocatalytic activity is obtained at the largest N loading about 5.6 at.%, corresponding to the most substitutional N in anatase TiO2. The film exhibits the degradation of methylene blue with a rate-constant (k) about 0.065 h−1 and retaining 7° water contact angle on the surface under visible light illumination.  相似文献   

8.
张学军  高攀  柳清菊 《物理学报》2010,59(7):4930-4938
本文采用基于密度泛函理论的平面波超软赝势方法研究了N,Fe共掺杂TiO2的晶体结构、电子结构和光学性质.研究表明,N,Fe共掺杂TiO2的晶格体积、原子间的键长及原子的电荷量发生变化,导致晶体中产生八面体偶极矩,并因此光生电子-空穴对有效分离,提高TiO2的光催化活性;N,Fe共掺杂同时在导带底和价带顶形成了杂质能级,使TiO2的禁带宽度变窄,光吸收带边红移到可见光区,这些杂质能级可以降低光生载流子的复合概率,提高Ti  相似文献   

9.
李聪  侯清玉  张振铎  赵春旺  张冰 《物理学报》2012,61(16):167103-167103
采用基于密度泛函理论框架下的第一性原理平面波超软赝势方法, 建立了N, Sm分别单掺杂以及Sm-N共掺杂的锐钛矿TiO2超胞模型, 对其态密度、能带结构和吸收光谱进行了计算. 结果表明: N单掺杂的锐钛矿TiO2的红移效果最强, 但Sm-N共掺杂锐钛矿TiO2的载流子寿命更长, 且共掺杂形成的体系更加稳定.  相似文献   

10.
张学军  柳清菊  邓曙光  陈娟  高攀 《物理学报》2011,60(8):87103-087103
采用第一性原理平面波超软赝势方法,系统研究了Mn,N共掺杂对锐钛矿相TiO2的晶体结构、缺陷形成能、电子结构、光学性质以及氧化还原能力的影响.研究表明:Mn,N共掺杂锐钛矿相TiO2后,TiO2晶格发生了畸变,导致晶体八面体偶极矩增加,有利于光生电子-空穴对的有效分离;在TiO2带隙中出现了杂质能级,使锐钛矿相TiO2的光学吸收带边红移,可见光区的吸收系数明显增大,有利于光催化效率的提高;在不考虑 关键词: 2')" href="#">锐钛矿相TiO2 第一性原理 Mn和N共掺杂 光催化性能  相似文献   

11.
张学军  张光富  金辉霞  朱良迪  柳清菊 《物理学报》2013,62(1):17102-017102
采用第一性原理平面波超软赝势方法研究了N,Co共掺杂锐钛矿相TiO2的微观结构和光学性质.结果表明:N,Co共掺杂后TiO2晶格中产生的偶极矩使光生电子-空穴对更有效地分离;在TiO2导带和价带之间形成了新的杂质能级,一方面使吸收带边红移到可见光区,光吸收性能明显增强,另一方面有利于光生电子-空穴对的分离,提高TiO2的光量子效率;与纯TiO2相比,N,Co共掺杂锐钛矿相TiO2带边的氧化还原势只有微小的变化,共掺杂后TiO2的强氧化还原能力得以保持.  相似文献   

12.
设计合成了一种同时具有取代型与空隙型的氮掺杂二氧化钛,并采用X射线衍射、X光电能谱、漫反射光谱、光致发光谱、电子顺磁共振进行了表征.结果表明新型氮掺杂二氧化钛中氮不仅取代晶格氧原子存在取代型氮,而且与氧配位在二氧化钛晶格中形成空隙型氮.这种新型氮掺杂二氧化钛比取代型和空隙型氮掺杂二氧化钛具有更高的可见光光催化活性,且两种氮掺杂形式具有协同效应.  相似文献   

13.
Photocatalyst titanium dioxide (TiO2) thin films were prepared using sol-gel process. To improve the photosensitivity of TiO2 at visible light, transition metal of Fe was implanted into TiO2 matrix at 20 keV using the metal plasma ion implantation process. The primary phase of the Fe-implanted TiO2 films is anatase, but X-ray diffraction revealed a slight shift of diffraction peaks toward higher angles due to the substitutional doping of iron. The additional band gap energy levels were created due to the formation of the impurity levels (Fe-O) verified by X-ray photoelectron spectroscopy, which resulted in a shift of the absorption edge toward a longer wavelength in the absorption spectra. The optical band gap energy of TiO2 films was reduced from 3.22 to 2.87 eV with an increase of Fe ion dosages from 0 to 1 × 1016 ions/cm2. The band gap was determined by the Tauc plots. The photocatalysis efficiency of Fe-implanted TiO2 was assessed using the degradation of methylene blue under ultraviolet and visible light irradiation. The calculated density of states for substitutional Fe-implanted TiO2 was investigated using the first-principle calculations based on the density functional theory. A combined experimental and theoretical Fe-implanted TiO2 film was formed, consistent with the experimentally observed photocatalysis efficiency of Fe-implanted TiO2 in the visible region.  相似文献   

14.
The electronic structures, dipole moment and optical properties of C-N-doped and C-N-codoped anatase titanium dioxide (TiO2) are studied using the plane-wave ultrasoft pseudopotential method of density functional theory (DFT). The results revealed that the absorption coefficients of pure TiO2 and N-doped TiO2 are consistent with experimental values in the visible-light region. The bands originating from C/N-2p states lie in the band gap of doped TiO2. A visible-light absorption edge red-shift can be observed. The atomic charges have changed, resulting in devation of the center of gravity of the negative electric charge from the positive electric charge in the super-cell, and their dipole moment would not be zero. The dipole moment has large influence on the optical responses in the visible region of TiO2. Because of the small distance (0.531 nm) between C and N atoms, the covalent bond component was easily enhanced between C atom and adjacent O atom, the covalent bonds making it more difficult for the carrier transfer. Moreover, its optical absorption coefficient is going to reduce in the visible-light region. Under the condition of the larger distance (0.691 nm) between C and N atoms, their interaction can be reduced, which is beneficial to electrons transition; as a result, a significant improvement of the photocatalytic activity of TiO2 has been found under the visible-light irradiation.  相似文献   

15.
彭丽萍  夏正才  杨昌权 《物理学报》2012,61(12):127104-127104
本文运用第一性原理的计算方法, 以C/TM和N/TM共掺杂(碳与过渡金属共掺杂和氮与过渡金属共掺杂)TiO2为例, 分别计算了它们共掺杂TiO2的束缚能、能带结构和态密度等, 通过对双掺杂结构的束缚能计算, 发现非金属和金属杂质有团聚成键的趋势, 其正的束缚能说明了掺杂原子与周围的原子成键, 因成键作用减少的体系能量高于因几何畸变带来的应力能. 在对N/V和C/Cr共掺杂能带结构和分子成键的详细分析中, 发现非金属和金属共掺杂TiO2, 要使掺杂后TiO2的光吸收边红移较大, 光催化性能较好, 就要符合金属和非金属共掺杂协同机制, 即 掺杂后在导带底下方和价带顶上方分别出现由金属3d和非金属2p态提供的杂质能级.  相似文献   

16.
The concentration-dependent electronic structures and optical properties of B-doped anatase TiO2 have been calculated using the density functional theory. The calculated results indicate that the electronic structures of B-doped TiO2 have changed compared with those of pure TiO2, which is mainly due to the new midgap states induced by B doping. As to the optical properties, we calculate the imaginary part of dielectric function ε2(ω) and optical absorption spectra of pure and B-doped TiO2. Two transitions E1 and E2 emerged after B doping. The intensity of absorption is enhanced by B doping both in the UV and visible regions. According to the results of imaginary part of dielectric function ε2(ω) and DOS, it can be concluded that the two optical transitions correspond to the transitions from the O 2p states in the top of valence band to the midgap states and from the midgap states to the Ti 3d states in the bottom of conduction band, respectively. These results have important implications for the further development of photocatalytic materials.  相似文献   

17.
Based on first‐principles calculations, the electronic structure and the associated magnetism of carbon‐doped rutile TiO2 have been investigated in the frame of the generalized gradient approximation (GGA). We find that the carbon substitutional oxygen ions can induce a magnetic moment of about 2.0µB/C, but the carbon substitutional titanium cannot provide any magnetism. Graphics of the spin density show that the magnetism is from the structure distortion around the carbon substitutional oxygen ions in the (110) plane of primitive TiO2. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We investigate the role of fluorine (F) in GaN‐based high electron mobility transistors (HEMTs) with first principle calculations. Formation energy calculations of F in GaN and AlN reveal that energetically favored interstitial F (Fi) and substitutional F at N sites (FN) could play important roles in the performance of HEMTs. Fi is responsible for positive threshold voltage (Vth) shift by forming F anion and depleting 2DEG carriers. The degradation of device performance at high temperature is ascribed to the defect energy state near conduction band edge of FN. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
《X射线光谱测定》2006,35(5):287-295
The local structures of Hf? O? N thin films were analyzed using an extended x‐ray absorption fine structure (EXAFS) study of the Hf L3‐edge and first‐principles calculations. Depending on their composition and atomic configurations, Hf4O5N2 [coordination number (CN): 6.25], Hf4O2N4 (CN: 5.5) and Hf4O2N4 (CN: 5.0) were suggested as the local structures of Hf? O? N thin films. Using the suggested local structures, the electronic structures of Hf? O? N thin films were calculated. The variations of the valence band were analyzed with the film composition and compared with the experimental valence band. The optical band gaps of Hf? O? N thin films were compared with the calculated values. The transition rate for the optical absorption was suggested as another reason for the band gap difference. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Photocatalyst‐assisted degradation of organic pollutants, which exhibits a novel strategy for solar‐energy utilization, possesses enormous potential in various applications. Extending the light‐absorption range in the spectrum of sunlight and improving light‐conversion efficiency are always primary issues to enhance the catalytic performance of these photocatalysts. Herein, a new structure of gold‐nanorod‐decorated TiO2 rambutan‐like microspheres is designed, which exhibits superior photocatalytic ability toward Rhodamine B in the range of visible light due to the 3D distribution of the TiO2 branches on the surface of the microspheres, which prompts the multireflection of photons. The absorption rate of photons is thereby tremendously enhanced. This is beneficial for the generation of hot electrons originating from the localized surface plasmonic resonance of Au nanorods, which can be used to both initiate the reaction and produce the photothermal effect. Hot electrons generated by a single Au nanorod in microspheres to initiate the degradation reaction can be as high as 2.5 times of those in the nanowires' counterpart. Moreover, the heating power of a single Au nanorod in microspheres reaches up to 4.4 times higher than that in nanowires, which further accelerates the degradation rate. The reaction pathway of visible‐light‐assisted RhB degradation catalyzed by Au/TiO2 microspheres goes through an initial N‐deethylation process instead of the complete cycloreversion catalyzed by pure TiO2 microspheres under UV irradiation. This strategy of structure design for improved photon absorption, which achieves high degradation rate and photothermal effect, is promising for the development of novel photocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号