首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ultrathin poly(methyl methacrylate) (PMMA) buffer layer was developed to improve the performance of n‐channel organic thin‐film transistors (OTFTs). The 8 nm‐thick PMMA film, prepared by spin‐coating, provided a very smooth surface and a uniform coverage on SiO2 surface reproducibly, which was confirmed by X‐ray reflectivity (XR) measurement. Then, we fabricated N,N′‐ditridecyl‐3,4,9,10‐perylenetetracarboxylic diimide (PTCDI‐C13) thin‐film transistors with and without this 8 nm‐thick PMMA insulating layer on SiO2 gate insulators and achieved one‐order increase of field‐effect mobility (up to 0.11 cm2/(Vs) in a vacuum), one‐half decrease of threshold voltage, and reduction of current hysteresis with the PMMA layer. Only TFTs with the PMMA layer displayed n‐channel operation in air and showed field‐effect mobility of 0.10 cm2/(Vs). We consider that electrical characteristics of n‐channel OTFTs were considerably improved because the ultrathin PMMA film could effectively passivate the SiO2 insulator surface and decrease interfacial electron traps. This result suggests the importance of the ultrathin PMMA layer for controlling the interfacial state at the semiconductor/insulator interface and the device characteristics of OTFTs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Photocatalytic multilayer nanocomposite films composed of anatase TiO2 nanoparticles and lignosulfonates (LS) were fabricated on quartz slides by the layer‐by‐layer (LBL) self‐assembly technique. X‐ray photoelectron spectroscopy (XPS), UV‐vis spectroscopy and atomic force microscopy (AFM) were used to characterize the TiO2/LS multilayer nanocomposite films. Moreover, the photocatalytic properties (decomposition of methyl orange and bacteria) of multilayer nanocomposite films were investigated. XPS results indicated that the intensities of titanium and sulfur peaks increased with the LBL deposition process. A linear increase in absorbance at 280 nm was found by UV‐Vis spectroscopy, suggesting that stepwise multilayer growth occurs on the substrate and this deposition process is highly reproducible. AFM images showed that quartz slide was completely covered by TiO2 nanoparticles when a 10‐bilayer multilayer film was formed. The decomposition efficiency of methyl orange by TiO2/LS multilayer films under the same UV irradiation time increased linearly with the number of TiO2 layers, and the results of decomposition of bacteria under UV irradiation showed that TiO2/LS multilayer nanocomposite films exhibited excellent decomposition activity of bacteria (Escherichia coil).  相似文献   

3.
Zirconia/polydopamine (ZrO2/PDA) nanocomposite multilayer films were constructed on Si substrate via a novel nonelectrostatic layer‐by‐layer (NELBL) assembly technique. The building block of this technique is the newly reported dopamine molecule, which can be attached to almost all material surfaces and undergo oxidation‐polymerization to form PDA layers; more importantly, the outer hydroxyl groups of the PDA layer can chelated with certain inorganic oxide nanoparticles to generate oxide films. Thus, ZrO2/PDA nanocomposite multilayer films were fabricated by sequential NELBL deposition of PDA and ZrO2 nanoparticles. The formation of the ZrO2/PDA nanocomposite multilayer films was monitored by the water contact angle (WCA) and ellipsometric thickness measurements, while the microstructure of the fabricated films was analyzed by means of atomic force microscope (AFM), field emission scanning electron microscope (FESEM), X‐ray photoelectron spectrum (XPS), and X‐ray diffraction (XRD) analysis. The mechanical and anticorrosion behaviors of the annealed ZrO2/PDA nanocomposite multilayers were found to be greatly enhanced as compared with that of the annealed homogeneous ZrO2 film. The better mechanical and anticorrosion behaviors of the annealed ZrO2/PDA nanocomposite multilayers than the annealed homogeneous ZrO2 film may be closely related to their special microstructure. Namely, the organic–inorganic hybrid microstructure of the annealed ZrO2/PDA nanocomposite multilayers may largely account for the increased nanohardness and corrosion resistance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
2,3‐Dimethylpentacene (DMP) and 2,3‐dimethyltetracene (DMT) were synthesized, characterized and employed as the channel material in the fabrication of thin‐film transistors. The two methyl groups increase the chemical stability of the compounds versus the pristine acene analogues. The crystals maintain herringbone‐like molecular packing, whereas the weak dipole associated with the unsymmetrical molecule induces an anti‐parallel alignment among the neighbors. This structural motif favors layered film growth on SiO2/Si surface. Thin film transistors prepared on SiO2/Si and n‐nonyltrichlorosilane‐modified SiO2/Si at different substrate temperatures were compared. DMP‐based transistors prepared on rubbed n‐nonyltrichlorosilane‐modified SiO2/Si substrate gave the highest field‐effect mobility of 0.46 cm2/Vs, whereas DMT‐based transistor gave a mobility of 0.028 cm2/Vs.  相似文献   

5.
Fully mass printed, flexible and truly polymeric organic field effect transistors consisting of a three layer dielectric made of CYTOP (low‐k), PVA (intermediate) and P(VDF‐TrFE‐CTFE)(high‐k) are introduced. Gravure‐, flexo‐and screen printing were selected as highly productive manufacturing technologies. These OFETs work at strongly reduced voltages and show high field effect mobility (µ = 0.2 cm2/Vs) and remarkable good bias stress stability at very high current density (50 µA/mm). Fully printed OFETs are used for the realization of ring oscillators working in the kHz regime at reduced supply voltage (10 V). In combination with printed fully polymeric piezoelectric loudspeakers, this work shows for the first time fully printed flexible audio systems. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1409–1415  相似文献   

6.
Visible‐light‐driven plasmonic photocatalyst Ag‐TiO2 nanocomposite hollow spheres are prepared by a template‐free chemically‐induced self‐transformation strategy under microwave‐hydrothermal conditions, followed by a photochemical reduction process under xenon lamp irradiation. The prepared samples are characterized by using scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, N2 adsorption‐desorption isotherms, X‐ray photoelectron spectroscopy, UV/Vis and Raman spectroscopy. Production of ?OH radicals on the surface of visible‐light illuminated TiO2 was detected by using a photoluminescence method with terephthalic acid as the probe molecule. The photocatalytic activity of as‐prepared samples was evaluated by photocatalytic decolorization of Rhodamine B (RhB) aqueous solution at ambient temperature under visible‐light irradiation. The results show that the surface plasmon absorption band of the silver nanoparticles supported on the TiO2 hollow spheres was red shifted, and a strong surface enhanced Raman scattering effect for the Ag‐TiO2 nanocomposite sample was observed. The prepared nanocomposite hollow spheres exhibits a highly visible‐light photocatalytic activity for photocatalytic degradation of RhB in water, and their photocatalytic activity is higher than that of pure TiO2 and commercial Degussa P25 (P25) powders. Especially, the as‐prepared Ag‐TiO2 nanocomposite hollow spheres at the nominal atomic ratio of silver to titanium ( R ) of 2 showed the highest photocatalytic activity, which exceeds that of P25 by a factor of more than 2.  相似文献   

7.
Changes in sample concentrations of CO2 or organic acids cause potential instabilities when polymer membranes are directly applied to the surface of ion-selective field-effect transistors (ISFETs). Currently used designs avoid this well-documented effect by placing a layer of aqueous buffer between polymeric membrane and ISFET serving as internal reference element. Here, we propose another solution to the problem. In order to compensate for the effect of pH changes on the ISFET threshold voltage, a double membrane is applied whose inner layer is pH-sensitive, while the outer layer exposed to the sample is a conventional ion-selective membrane. It is shown that this approach strongly reduces the earlier-mentioned interference effects.  相似文献   

8.
Non‐chlorinated solvents are highly preferable for organic electronic processing due to their environmentally friendly characteristics. Four different halogen‐free solvents, tetrafuran, toluene, meta‐xylene and 1,2,4‐trimethylbenzene, were selected to fabricate n‐channel organic thin film transistors (OTFTs) based on 3‐hexylundecyl substituted naphthalene diimides fused with (1,3‐dithiol‐2‐ylidene)malononitrile groups (NDI3HU‐DTYM2). The OTFTs based on NDI3HU‐DTYM2 showed electron mobility of up to 1.37 cm2·V?1·s?1 under ambient condition. This is among the highest device performance for n‐channel OTFTs processed from halogen‐free solvents. The different thin‐film morphologies, from featureless low crystalline morphology to well‐aligned nanofibres, have a great effect on the device performance. These results might shed some light on solvent selection and the resulting solution process for organic electronic devices.  相似文献   

9.
We investigated the effects of the multilayer polymer‐clay nanohybrid passivation films on the stability of pentacene organic thin‐film transistors (OTFTs) exposed to air and UV irradiation. Well‐ordered multilayer films were deposited by the spin‐assisted layer‐by‐layer assembly method using photocrosslinkable poly(vinyl alcohol) with the N‐methyl‐4(4′‐formylstyryl)pyridinium methosulfate acetal group (SbQ‐PVA) and Na+‐montmorillonite in a water‐based solution process. When photocrosslinked, these SbQ‐PVA/clay multilayers were found to serve as excellent barriers to O2 and UV‐light. Moreover, when used as passivation layers, they enhanced the stability of pentacene OTFT devices exposed to air and UV radiation.  相似文献   

10.
The ability to effectively transfer photoexcited electrons and holes is an important endeavor toward achieving high‐efficiency solar energy conversion. Now, a simple yet robust acid‐treatment strategy is used to judiciously create an amorphous TiO2 buffer layer intimately situated on the anatase TiO2 surface as an electron‐transport layer (ETL) for efficient electron transport. The facile acid treatment is capable of weakening the bonding of zigzag octahedral chains in anatase TiO2, thereby shortening staggered octahedron chains to form an amorphous buffer layer on the anatase TiO2 surface. Such amorphous TiO2‐coated ETL possesses an increased electron density owing to the presence of oxygen vacancies, leading to efficient electron transfer from perovskite to TiO2. Compared to pristine TiO2‐based devices, the perovskite solar cells (PSCs) with acid‐treated TiO2 ETL exhibit an enhanced short‐circuit current and power conversion efficiency.  相似文献   

11.
Poly(3‐[2‐(5‐hexyl‐2‐thienyl) ethenyl]‐2,2′‐bithiophene) ( P2 , see Scheme 1 ) with conjugated thienylvinyl side chain was synthesized by copolymerization of the thiophene units with and without conjugated side chain with Pd‐catalyzed Stille coupling method. For comparison, P1 with the hexyl side chain instead of conjugated side chain was also synthesized. P2 film shows broad absorption in the visible region with absorption edge at about 700 nm. The solution‐processed polymer field‐effect transistors were fabricated and characterized with bottom gate/top contact geometry. The organic field‐effect transistors (OFET) based on P2 showed an average hole mobility of about 0.034 cm2/Vs (the highest value reached 0.061 cm2/Vs) upon annealing at about 180 °C for 30 min, with a threshold voltage of ?1.15 V and an on/off ratio of 104 with n‐octadecyltrichlorosilane (OTS) modified SiO2 substrate. In comparison, the OFET based on P1 displayed a hole mobility of 8.9 × 10–4 cm2/Vs and an on/off ratio of 104 with OTS modified SiO2 substrate. The results indicate that the polythiophene derivative with conjugated thienylvinyl side chain is a promising polymer for the application in polymer field‐effect transistors. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5304–5312, 2009  相似文献   

12.
An ultrasensitive photoelectrochemical method for achieving real‐time detection of single nanoparticle collision events is presented. Using a micrometer‐thick nanoparticulate TiO2‐filmed Au ultra‐microelectrode (TiO2@Au UME), a sub‐millisecond photocurrent transient was observed for an individual N719‐tagged TiO2 (N719@TiO2) nanoparticle and is due to the instantaneous collision process. Owing to a trap‐limited electron diffusion process as the rate‐limiting step, a random three‐dimensional diffusion model was developed to simulate electron transport dynamics in TiO2 film. The combination of theoretical simulation and high‐resolution photocurrent measurement allow electron‐transfer information of a single N719@TiO2 nanoparticle to be quantified at single‐molecule accuracy and the electron diffusivity and the electron‐collection efficiency of TiO2@Au UME to be estimated. This method provides a test for studies of photoinduced electron transfer at the single‐nanoparticle level.  相似文献   

13.
《化学:亚洲杂志》2017,12(8):920-926
A novel perfluoro‐1,4‐phenylenyl 6H ‐indolo[2,3‐b ]quinoxaline derivative ( TFBIQ ) was designed and synthesized by using a C−H direct arylation method. The optoelectrical properties of the obtained TFBIQ were fully characterized by UV/Vis spectroscopy, photoluminescence spectroscopy, cyclic voltammetry, and a group of Alq3‐based green organic light‐emitting diodes (OLEDs). Device A, which used 0.5 nm‐thick TFBIQ as the interfacial modification layer, exhibited the five best advantages of device performance including a minimum turn‐on voltage as low as 3.1 V, a maximum luminescence intensity as high as 26564 cd m−2, a highest current density value of 348.9 mA cm−2 at a voltage of 11 V, the smallest efficiency roll‐off, as well as the greatest power efficiency of 1.46 lm W−1 relative to all of the other tested devices with thicker TFBIQ and also 10 nm‐thick MoO3 as hole‐injection layers (HILs). As a promising candidate for an organic HIL material, the as‐prepared TFBIQ exhibited a strong thickness effect on the performance of corresponding OLEDs. Furthermore, the theoretical calculated vertical ionization potential of the fluorinated TFBIQ suggests better anti‐oxidation stability than that of the non‐fluorinated structure.  相似文献   

14.
To improve the electron collection, electron lifetime, and light‐harvesting efficiency of dye‐sensitized solar cells simultaneously, Au nanoflowers were prepared and used to cover the entire TiO2 film. Deposition of Au nanoflowers around the TiO2 film formed a light‐scattering “box” that covered the entire TiO2 film. Compared with a light‐scattering layer that only covers the top surface of TiO2, the Au‐nanoflowers box exhibited better light‐harvesting efficiency due to omnidirectional light scattering, faster electron transport (attributed to the formation of electron channels between the metallic Au nanoflowers and the electron‐collection electrode), and slower charge recombination. As a consequence, the short‐circuit photocurrent and open‐circuit photovoltage were both enhanced significantly, which improved the power conversion efficiency from 8.12 to 10.91 % (34 %) when an Au‐nanoflowers box was wrapped around the photoanode.  相似文献   

15.
Herein, we establish a simple synthetic strategy affording a heterogeneous, precious metal‐free, dye‐sensitized photoelectrode for water oxidation, which incorporates a Prussian blue (PB) structure for the sensitization of TiO2 and water oxidation catalysis. Our approach involves the use of a Fe(CN)5 bridging group not only as a cyanide precursor for the formation of a PB‐type structure but also as an electron shuttle between an organic chromophore and the catalytic center. The resulting hetero‐functional PB‐modified TiO2 electrode demonstrates a low‐cost and easy‐to‐construct photoanode, which exhibits favorable electron transfers with a remarkable excited state lifetime on the order of nanoseconds and an extended light absorption capacity of up to 500 nm. Our approach paves the way for a new family of precious metal‐free robust dye‐sensitized photoelectrodes for water oxidation, in which a variety of common organic chromophores can be employed in conjunction with CoFe PB structures.  相似文献   

16.
We synthesized a titanium dioxide–polyaniline core–shell nanocomposite and implemented it as an efficient sorbent for the needle‐trap extraction of some volatile organic compounds from urine samples. Polyaniline was synthesized, in the form of the emeraldine base, dissolved in dimethyl acetamide followed by diluting with water at pH 2.8, using the interfacial polymerization method. The TiO2 nanoparticles were encapsulated inside the conducting polymer shell, by adapting the in situ dispersing approach. The surface characteristics of the nanocomposite were investigated by Fourier transform infrared spectrometry, scanning electron microscopy, and transmission electron microscopy. After obtaining acceptable preliminary results, some selected volatile compounds, including chloroform, benzene, toluene, ethylbenzene, xylene, and chlorobenzenes were used as model analytes to validate the enrichment properties of the prepared sorbent in conjunction with gas chromatography mass spectrometric detection. Important parameters influencing the extraction process such as extraction temperature, ionic strength, sampling flow rate, extraction time, desorption temperature, and time were optimized. The limits of detection and limits of quantification values were in the range of 0.5–3  and 2–5 ng/L, respectively, using time‐scheduled selected ion monitoring mode. The relative standard deviation percent with three replicates was in the range of 5–10%. The applicability of the developed needle‐trap method was examined by analyzing urine samples and the relative recovery percentages for the spiked samples were in the range of 81–105%.  相似文献   

17.
An organic light‐emitting diode was fabricated using cadmium selenide (CdSe)/poly(N‐vinylcarbazole) nanocomposite as the hole transport layer (HTL). The CdSe nanoparticles (NPs) with a mean crystallite size of 6.2 nm were prepared by high‐energy ball milling. Based on the current–voltage curves, the threshold voltage (V th) of the composite diode was found to be ~1.3 ± 0.1 V lower than that of the diode without CdSe, with a significant increase in the current density for the composite diode. Moreover, the electroluminescence (EL) properties (luminous flux, emittance, and intensity) of the diode were found to be enhanced by ~16% with respect to those of the diode without CdSe. The decrease of the threshold voltage and the increase of the current density and the EL were due to the CdSe NPs that operate as hole trap centers in the HTL.  相似文献   

18.
Organic field‐effect transistors incorporating planar π‐conjugated metal‐free macrocycles and their metal derivatives are fabricated by vacuum deposition. The crystal structures of [H2(OX)] (H2OX=etioporphyrin‐I), [Cu(OX)], [Pt(OX)], and [Pt(TBP)] (H2TBP=tetra‐(n‐butyl)porphyrin) as determined by single crystal X‐ray diffraction (XRD), reveal the absence of occluded solvent molecules. The field‐effect transistors (FETs) made from thin films of all these metal‐free macrocycles and their metal derivatives show a p‐type semiconductor behavior with a charge mobility (μ) ranging from 10?6 to 10?1 cm2 V?1 s?1. Annealing the as‐deposited Pt(OX) film leads to the formation of a polycrystalline film that exhibits excellent overall charge transport properties with a charge mobility of up to 3.2×10?1 cm2 V?1 s?1, which is the best value reported for a metalloporphyrin. Compared with their metal derivatives, the field‐effect transistors made from thin films of metal‐free macrocycles (except tetra‐(n‐propyl)porphycene) have significantly lower μ values (3.0×10?6–3.7×10?5 cm2 V?1 s?1).  相似文献   

19.
Interfacial charge transfer (CT) is of interest owing to its effect on the performance of molecular photovoltaic (PV) devices. The characteristics and structures of interfacial materials, such as TiO2 nanoparticles (NPs) in some solar cells, are employed to adjust the CT process. In this study, three kinds of interfacial systems, including a solar cell‐like TiO2‐Ag‐ p‐mercaptopyridine (MPY)‐ iron phthalocyanine (FePc) system, are compared to investigate the interfacial CT process using surface‐enhanced Raman scattering (SERS) spectroscopy. The SERS results show the significance of TiO2 NPs in the system on altering the direction and path of the interfacial CT, which is closely associated with the CT enhancement contribution to SERS in such an interfacial system. SERS spectroscopy is expected to be a promising technique for the exploration and estimation of the interfacial CT behavior in PV devices, which may further extend the applications of SERS in the field of solar cells.  相似文献   

20.
A series of unsymmetrical naphthalene imide derivatives ( 1a , 1b , 2 , 3 , 4 , 5 ) with high electron affinity was synthesized and used in n‐channel organic field‐effect transistors (OFETs). They have very good solubility in common organic solvents and good thermal stability up to 320 °C. Their photophysical, electrochemical, and thermal properties were investigated in detail. They showed low‐lying LUMO energy levels from ?3.90 to ?4.15 eV owing to a strong electron‐withdrawing character. Solution‐processed thin‐film OFETs based on 1a , 1b , 2 , 3 , 4 were measured in both N2 and air. They all showed n‐type FET behavior. The liquid‐crystalline compounds 1a , 1b , and 3 showed good performance owing to the self‐healing properties of the film in the liquid‐crystal phase. Compound 3 has an electron mobility of up to 0.016 cm2 V?1 s?1 and current on/off ratios of 104–105.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号