首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radicals generated by γ-irradiation of malonic acid and methyl malonic acid were studied as a function of temperature by inversion recovery, echo-detected saturation recovery and electron-electron double resonance (ELDOR) at X-band, and by continuous-wave saturation recovery at X-band and S-band. ELDOR reductions for malonic acid radical in polycrystalline and single-crystal samples indicate that nuclear spin relaxation is faster than both electron spin relaxation and cross relaxation between 93 and 233 K. Deuteration of the carboxylate protons caused the maximum ELDOR reduction to shift from about 110 to 150 K, consistent with the assignment of the rapid nuclear spin relaxation to hydrogen-bonded proton dynamics. ELDOR enhancements for both radicals formed in methyl malonic acid indicate that cross relaxation is faster than both electron spin relaxation and nuclear spin relaxation between 77 and 220 K. Enhanced cross relaxation and electron spin relaxation are attributed to the rotation of methyl groups at a rate comparable to the electron Larmor frequency. The temperature dependence of the enhancement of 1/T 1e was analyzed to determine the activation energies for methyl rotation. The same radical is formed in irradiated methyl malonic acid and L-alanine, but the barrier to rotation of the α-methyl is 500 K in the methyl malonic acid host and 1500 K in the L-alanine host, which indicates a large impact of the lattice on the barrier to rotation.  相似文献   

2.
《Physics letters. A》2014,378(18-19):1336-1340
Intrinsic electron spin relaxation due to the D'yakonov–Perel' mechanism is studied in monolayer Molybdenum Disulphide. An intervalley in-plane spin relaxation channel is revealed due to the opposite effective magnetic fields perpendicular to the monolayer Molybdenum Disulphide plane in the two valleys together with the intervalley electron–phonon scattering. The intervalley electron–phonon scattering is always in the weak scattering limit, which leads to a rapid decrease of the in-plane spin relaxation time with increasing temperature. A decrease of the in-plane spin relaxation time with the increase of the electron density is also shown.  相似文献   

3.
4.
5.
《Current Applied Physics》2014,14(3):516-520
In this article, we employ the semiclassical Monte Carlo approach to study the spin polarized electron transport in single layer graphene channel. The Monte Carlo method can treat non-equilibrium carrier transport and effects of external electric and magnetic fields on carrier transport can be incorporated in the formalism. Graphene is the ideal material for spintronics application due to very low Spin Orbit Interaction. Spin relaxation in graphene is caused by D'yakonov-Perel (DP) relaxation and Elliott-Yafet (EY) relaxation. We study effect of electron electron scattering, temperature, magnetic field and driving electric field on spin relaxation length in single layer graphene. We have considered injection polarization along z-direction which is perpendicular to the plane of graphene and the magnitude of ensemble averaged spin variation is studied along the x-direction which is the transport direction. This theoretical investigation is particularly important in order to identify the factors responsible for experimentally observed spin relaxation length in graphene.  相似文献   

6.
It is shown that the D’yakonov-Perel’ spin relaxation mechanism in a two-dimensional electron gas is controlled not only by the electron-momentum relaxation that accounts for the electron mobility but also by the electron-electron collisions. The kinetic equation describing the mixing of electron spin in the k space was solved, and the spin relaxation time τs caused by frequent electron-electron collisions was determined. The time τ s was calculated for a nondegenerate electron gas both with and without allowance for the exchange interaction.  相似文献   

7.
量子阱中电子自旋注入及弛豫的飞秒光谱研究   总被引:4,自引:0,他引:4       下载免费PDF全文
采用飞秒脉冲的饱和吸收光谱方法研究了GaAs/AlGaAs多量子阱中电子自旋的注入和 弛豫特性,测得电子自旋极化弛豫时间为80±10ps.说明了电子自旋 轨道耦合相互作用引 起局域磁场的随机化,是导致电子的自旋极化弛豫的主要机理. 关键词: 自旋电子学 半导体量子阱 飞秒激光光谱 自旋 轨道耦合  相似文献   

8.
We have measured the relaxation time, T1, of the spin of a single electron confined in a semiconductor quantum dot (a proposed quantum bit). In a magnetic field, applied parallel to the two-dimensional electron gas in which the quantum dot is defined, Zeeman splitting of the orbital states is directly observed by measurements of electron transport through the dot. By applying short voltage pulses, we can populate the excited spin state with one electron and monitor relaxation of the spin. We find a lower bound on T1 of 50 micros at 7.5 T, only limited by our signal-to-noise ratio. A continuous measurement of the charge on the dot has no observable effect on the spin relaxation.  相似文献   

9.
We develop a gauge theory for diffusive and precessional spin dynamics in a two-dimensional electron gas. Our approach reveals a direct connection between the absence of the equilibrium spin current and a strong anisotropy in the spin relaxation: both effects arise if spin-orbit coupling is reduced to a pure gauge SU(2) field. In this case, the spin-orbit coupling can be removed by a gauge transformation in the form of a local SU(2) spin rotation. The resulting spin dynamics is exactly described in terms of two kinetic coefficients: the spin diffusion and electron mobility. After the inverse transformation, full diffusive and precessional spin density dynamics, including the anisotropic spin relaxation, formation of stable spin structures, and spin precession induced by a macroscopic current are restored. Explicit solutions of the spin evolution equations are found for the initially uniform spin density and for stable, nonuniform structures. Our analysis demonstrates a universal relation between the spin relaxation rate and spin-diffusion coefficient.  相似文献   

10.
Spin dynamics in the impurity band of a semiconductor with the spin-split spectrum is considered. Due to the splitting, phonon-assisted hops from one impurity to another axe accompanied by rotation of the electron spin, which leads to spin relaxation. The system is strongly inhomogeneous because of exponential variation of hopping times. However, at very small coupling an electron diffuses over a distance exceeding the characteristic scale of the inhomogeneity during the time of spin relaxation, so one can introduce an averaged spin relaxation rate. At larger values of coupling, the system is effectively divided into two subsystems: one where relaxation is very fast and another where relaxation is rather slow. In this case, spin decays due to the escape of the electrons from one subsystem to another. As a result, the spin dynamics is nonexponential and hardly depends on spin-orbit coupling. The text was submitted by the authors in English.  相似文献   

11.
Spin relaxation due to polar optical phonon scattering in semiconductors was investigated. The relaxation of the electron spin was found to increase with increasing the strength of the electric field. However, a high field completely depolarized the electron spin due to an increase of the spin precession frequency of the hot electrons, suggesting that high field transport conditions might not be desirable for spin-based technology with these semiconductors. It was also found that spin relaxation decreases with increasing moderately n-doping density or decreasing temperature. The results were discussed in comparison with the data available in the literature.  相似文献   

12.
13.
A low-field theory for paramagnetic relaxation enhancement (PRE), appropriate for the outer-sphere relaxation, is presented for the electron spin quantum number S = 1, 3/2, 2, 5/2, 3 and 7/2. The theory is used to calculate the PRE at low magnetic field, as a function of the translational diffusion coefficient, for various values of the electron spin quantum number, for small and fairly large values of the static zero-field splitting (ZFS), and for a given set of parameters determining the electron spin relaxation. We have found earlier that the static ZFS has a profound influence on the electron spin relaxation; such effects are also evident in the present study. Comparisons are made with other existing models for the outer-sphere PRE, and significant differences are found for slowly diffusing systems with large ZFS. The theory is also used to obtain a novel interpretation of experimental data for an acetone solution of a Mn(III) complex.  相似文献   

14.
We investigate low-frequency electron spin dynamics in a quantum Hall system with wire confinement by nuclear spin relaxation measurements. We developed a technique to measure the local nuclear spin relaxation rate T(1)(-1). T(1)(-1) is enhanced on both sides of the local filling factor ν(wire)=1, reflecting low-frequency fluctuations of electron spins associated with Skyrmions inside the wire. As the wire width is decreased, the fast nuclear spin relaxation is suppressed in a certain range of Skyrmion density. This suggests that the multi-Skyrmion state is modified and the low-frequency spin fluctuations are suppressed by the wire confinement.  相似文献   

15.
The electron spin relaxation rates for the stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) doped into polystyrene were studied by inversion recovery and electron spin echo at X-band and Q-band between 20 and 295 K. At low concentration (340 μM, 0.01 %), spin–lattice relaxation was dominated by the Raman process and a local mode. At high concentration (140 mM, 5 %), relaxation is orders of magnitude faster than at the lower concentration, and 1/T 1 is approximately linearly dependent on the temperature. Spin lattice relaxation rates are similar at X-band and Q-band. The temperature dependence of spin echo dephasing was faster at about 140 K than at higher or lower temperatures, which is attributed to a wagging motion of the phenyl groups.  相似文献   

16.
The spin polarization features of an electron system and the relaxation of nonequilibrium spin excitations near an even-denominator fractional state of 3/2 in a two-dimensional electron system based on the GaAs/AlGaAs heterostructure are experimentally investigated. It is shown that the 3/2 state is a singular point in the filling factor dependence of the spin ordering of the two-dimensional electron system, at which the spin subsystem is rearranged. A giant slowing down of the relaxation of spin excitations to the ground state is revealed in a certain range of filling factors near filling factor 3/2.  相似文献   

17.
An effect of spin relaxation on electron spin nutation was analyzed theoretically for a quartet state in liquid solution. Modulation of zero-field interactions by random rotational motion is considered as a source of electron spin relaxation under an assumption of a short correlation time. We solved the quantum mechanical equation of motion under a nutation pulse and calculated a nutation spectrum. The results showed that the nutation frequency was strongly affected by spin relaxation. We discuss dependencies of several parameters, such as a rotational correlation time, a microwave field intensity and frequency, and a zero-field interaction on nutation frequency.  相似文献   

18.
In various studies of the spin dynamics in radical pairs, benzoyl-type radicals have been one of the two paramagnetic pair species. Their electron spin relaxation has been assumed to be slow enough to be neglected in the data analysis. This assumption is checked by measuring the electron spin relaxation in a sequence of three acyl radicals (benzoyl, 2,4,6-trimethylbenzoyl and hexahydrobenzoyl) by time-resolved electron paramagnetic resonance spectroscopy. In contrast to the assumed slow relaxation, rather short spin-lattice relaxation times (100–400 ns) are found for benzoyl and 2,4,6-trimethylbenzoyl radicals from the decay of the integral initial electron polarization to thermal equilibrium at different temperatures and viscosities. The relaxation is induced by a spin-rotation coupling arising from two different types of radical movements: overall rotation of the whole radical and hindered internal rotation of the CO group. The predominant second contribution depends on the barrier of the internal rotation. The obtained results are well explained in the frame of Bull’s theory when using a modified rotational correlation time τ J . The size of the spin-rotation coupling due to the internal CO group rotation in benzoyl radicals is estimated to be |C α|=1510 MHz.  相似文献   

19.
Single crystals and microcrystals Si: B enriched with 29Si isotopes have been studied using nuclear magnetic resonance and electron paramagnetic resonance (EPR) in the temperature range from 300 to 800 K. It has been found that an increase in the temperature from 300 to 500 K leads to a change in the kinetics of the relaxation of the saturated nuclear spin system. At 300 K, the relaxation kinetics corresponds to direct electron–nuclear interaction with inhomogeneously distributed paramagnetic centers introduced by the plastic deformation of the crystals. At 500 K, the spin relaxation occurs through the nuclear spin diffusion and electron–nuclear interaction with an acceptor impurity. It has been revealed that the plastic deformation affects the EPR spectra at 9 K.  相似文献   

20.
Comparative analysis of pulsed electron spin resonance spectroscopy at X-band and at S-band indicates that despite the lower sensitivity at the lower frequency, electron spin echo spectroscopy at S-band provides valuable information on the electron-nuclear interactions in systems where the electron spin echo modulation is too small to study well at X-band. It is shown that independent experimental data on electron spin echo modulation and decay at both X-band and S-band put additional constraints on the structural parameters obtained by comparison of experimental and simulated nuclear modulation patterns, and can also help to elucidate the electron spin relaxation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号