首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 987 毫秒
1.
We report on solution‐processible polymer solar cells (PSCs) fabricated on a papery substrate using carton. Highly conductive PEDOT:PSS was used as a bottom anode and planarization layer, and a semi‐transparent top cathode was applied. This research could be an important approach to the development of all‐solution‐processible papery PSCs as well as paper electronics.

  相似文献   


2.
We demonstrate the monolithic integration of a microstructured organic photodiode with a planar optical stripe waveguide. The manufacturing of this waveguide‐integrated organic photodiode is based on an UV photolithography process. The integration of photodiodes with optical waveguides represents an essential building block in the field of optoelectronic‐photonic integrated circuits.

  相似文献   


3.
The multiferroic Pb(Fe1/2V1/2)O3 (PFV) bulk ceramic was fabricated by a conventional ceramic sintering method. The strong visible‐light photovoltaic effect in Sn‐doped‐In2O3(ITO)/PFV/ITO structure capacitor was observed. The open‐circuit voltage was up to ~0.7 V, which was much higher than the value (~0.3 V) in BiFeO3 film. The photo‐excited electric current is almost proportional to the incident light illumination intensity. The good visible‐light photovoltaic makes PFV ceramic a potential candidate for practical application in solar cell devices.

  相似文献   


4.
In this Letter, we report on a new nanofabrication technology to yield highly arrayed nanoelectrodes for organic–inorganic solar cells that promise new levels of performance and efficiency. This technology efficiently controls the effective area of highly arrayed nanoelectrodes and allows for the maximum incorporation of organic materials within the voids. Particularly the 3D parameters such as thickness, spacing, and height of the nanostructures are controlled non‐lithographically by atomic layer deposition technology.

  相似文献   


5.
Electric control of magnetism is demonstrated in a multiferroic metal–organic framework with a perovskite structure. A moderate electric field of a few kV/cm applied during the cooling process is able to cause a large (more than 50%) change of the magnetization at low temperature. This significant magnetoelectric effect is ascribed to the electric field manipulation of orientation of hydrogen bonds that modify the superexchange interaction between metal ions.

  相似文献   


6.
We have shown that nitrophenyl groups may be added to the surface of few‐layer epitaxial graphene (EG) by the formation of covalent carbon–carbon bonds thereby changing the electronic structure and transport properties of EG from near‐metallic to semiconducting. In the present Letter we discuss the opportunities afforded by such chemical processes to engineer device functionality in graphene by modification of the electronic properties without physical patterning.

  相似文献   


7.
The growth of perylene films on an amorphous oxide bottom layer is investigated. The perylene films show clear spiral growth and formation of screw dislocations. As a function of deposition rate and film thickness the densities of screw dislocations, grains as well as the roughness and the lateral correlation length are determined from AFM images. The evolution of microstrain as calculated from an XRD peak profile analysis corresponds to the dislocation density. The simultaneous decrease of grain density and dislocation density with film thickness is explained by considering the overgrowth of grains due to loss of dislocations acting as growth spirals. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

  相似文献   


8.
The possibility of multiferroicity arising from charge ordering in LuFe2O4 and structurally related rare earth ferrites is reviewed. Recent experimental work on macroscopic indications of ferroelectricity and microscopic determination of coupled spin and charge order indicates that this scenario does not hold. Understanding the origin of the experimentally observed charge and spin order will require further theoretical work. Other aspects of recent research in these materials, such as geometrical frustration effects, possible electric‐field‐induced transitions, or orbital order are also briefly treated.

  相似文献   


9.
Epitaxial TiC/SiC multilayers were grown by magnetron sputtering at a substrate temperature of 550 °C, where SiC is normally amorphous. The epitaxial TiC template induced growth of cubic SiC up to a thickness of ~2 nm. Thicker SiC layers result in a direct transition to growth of the metastable amorphous SiC followed by renucleation of nanocrystalline TiC layers.

  相似文献   


10.
The Fe3O4(111)/graphene/Ni(111) trilayer is proposed to be used as an ideal spin‐filtering sandwich where the half‐metallic properties of magnetite are used. Thin magnetite layers on graphene/Ni(111) were prepared via successive oxidation of a thin iron layer predeposited on graphene/Ni(111) and the formed system was investigated by means of low‐energy electron diffraction and photoelectron spectroscopy. The electronic structure and structural quality of the graphene film sandwiched between two ferromagnetic layers remain unchanged upon magnetite formation as confirmed by experimental data.

  相似文献   


11.
We discovered and characterized the χ (3)‐active Na3Li(SeO4)2·6H2O crystal with considerably high Raman gain coefficients for laser physics and nonlinear optics. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

  相似文献   


12.
We have demonstrated an effective method of enhancing the power efficiency of double–emissive solution‐processed blue phosphorescent organic light‐emitting diode (PHOLED) by controlling the charge transport in the heterojunction and emissive layer. The first emissive layer consists of poly(vinylcarbazole) (PVK) and bis(4,6 difluorophenylpyridinato‐N,C2)picolinatoiridium (FIrpic) mixed with 4,4′,4″‐tris(N‐carbazolyl)‐triphenylamine (TCTA) or 1,3‐bis[(4‐tert‐ butylphenyl)‐1,3,4 oxidiazolyl] phenylene (OXD‐7). The second layer consists of an alcohol‐soluble 2,7‐bis(diphenylphosphoryl)‐9,9′‐spirobi[fluorene] (SPPO13) and FIrpic blend. The incorporation of OXD‐7 into PVK blurs the interface between the emissive layers and widens the recombination zone while blending TCTA into PVK reduces the hole‐ injection barrier from PEDOT:PSS to PVK. By adding TCTA or OXD‐7 into the first emissive layer, we have achieved a power efficiency of 10 lm/W and 11 lm/W, respectively, at 1000 cd/m2.

  相似文献   


13.
We present a computational study based on time‐dependent density functional theory of the optical absorption spectra of TiO2 nanowires sensitized with organic dye molecules. We concentrate on catechol and squaraine dyes. For those molecules, we compute adsorption geometries and energies and investigate the optical properties of the combined dye– nanowire system. We find that although the molecules have qualitatively different optical spectra in the gas phase, both lead to an enhancement of the absorption in the visible frequency range when adsorbed on a nanowire.

  相似文献   


14.
Twinning in a CuInS2 layer in a completed thin‐film solar cell was analyzed by means of electron backscatter diffraction. This technique revealed the microstructure of the CuInS2 thin films and local orientation relationships between the grains. At various locations within the layer it was possible to retrace how twinning occurred comparing the local orientations with the theoretically possible changes in orientation by twinning. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

  相似文献   


15.
Using silver and gold, we have measured the size‐dependence of the yield strength of atomic‐sized samples as small as a single‐atom bridge, with pico‐level resolution in the applied force and displacement. The strength approaches theoretical values as the diameter of the sample becomes comparable to the Fermi wavelength of electrons (~0.5 nm); in the limit of a single‐atom bridge, the strength is over four orders of magnitude higher than in bulk single crystals. Results provide direct evidence for Pauling's prediction of bond stiffening with reduced atomic coordination. Beginning with a single‐atom bridge, strength evolves in a staircase manner in Ag, instead of the intuitively assumed continuous approach to a saturating bulk value.

  相似文献   


16.
We report enhanced anomalous photovoltaic effects and switchable photovoltage generation in pure and Pr–Cr co‐doped BiFeO3 (BFO) nanotubes (NTs). Influence of metal doping on short circuit current, open circuit voltage, power conversion efficiency and fill factor are investigated. The power conversion efficiency of pure BFO NTs (~0.207%) is found to be enhanced by several orders of magnitude in comparison with the reported bulk effect. Pr‐doped NTs provide highest values of power conversion efficiency (~0.5%).

  相似文献   


17.
Utilizing three‐dimensional vectorial electromagnetic simulation, we propose a new refractive index sensing mechanism based on Fano resonance enhanced two‐photon‐absorption induced luminescence (TPL). The TPL from gold nanodisk heptamer (GNDH), which is affected by the refractive index of surrounding material, is used as an example to demonstrate the sensing mechanism facilitated by Fano resonance. The sensitivity of our method is about one order of magnitude better than the conventional refractive index sensing strategy employing plasmonic Fano resonance, while the size of the sensing probe can be further reduced at the same time.

  相似文献   


18.
Ce‐doped Lu3Al5O12 optical ceramics co‐doped with Mg2+ are fabricated by solid‐state reaction method and further optimized by an air‐annealing process. Mg2+ co‐doping leads to a significant decrease of thermoluminescence intensity above room temperature and an increase of scintillation light yield (LY) value and fast component content even if the overall scintillation efficiency decreases. Scintillation LY of ~21900 ph/MeV has been achieved with a short shaping time of 1 μs, and the ratio of LY values for 1 μs and 10 μs shaping times was as high as 79%. The acceleration of scintillation response induced by Mg2+ co‐doping and the role of Ce4+ ions in the scintillation mechanism are discussed.

  相似文献   


19.
Ultrafast transverse thermoelectric voltage response has been observed in c‐axis inclined epitaxial La0.5Sr0.5CoO3thin films. Voltage signals with the rise time of 7 ns have been detected under the irradiation of pulse laser with duration of 28 ns. A concept, named response rate ratio, has been proposed to evaluate the intrinsic response rate, and this ratio in La0.5Sr0.5CoO3is smaller than that in other reported materials. The low resistivity is thought to be responsible for the ultrafast response, as low resistivity induces small optical penetration depth, and response time has a monotonous increasing relationship with this depth.

  相似文献   


20.
Quaternary kesterite‐type Cu2ZnSnS4 (CZTS) nanoparticles (NPs) were successfully synthesized by a single‐step solvothermal process. Semiconductor CZTS nanoparticles were obtained from ethylene glycol (EG) and CZTS precursor after solvothermal process at 180 °C for 30 h in polyvinylpyrrolidone (PVP) medium. The synthesized CZTS NPs were further annealed at 450 °C in nitrogen atmosphere and used for further characterizations. The CZTS NPs were characterized using X‐ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), micro Raman spectroscopy, high resolution transmission electron microscopy (HRTEM) and X‐ray photoelectron spectroscopy (XPS). The optical properties of the CZTS NPs were recorded by UV–vis absorption spectroscopy. The results showed that the synthesized CZTS nanoparticles are kesterite‐type CZTS, with good crystallinity and a stoichiometric composition. Moreover, the prepared nanoparticles have a size ranging from 5–7 nm and a band gap of ~1.5 eV.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号