首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis and Characterization of New Cyclic and Cage‐like Indium — Phosphorus and Indium — Arsenic Compounds The reaction of InEt3 with H2ESiiPr3 initially yields the cyclic compound [Et2InP(H)SiiPr3]2 ( 2 ). 2 appears as a mixture of cis and trans isomers and has been characterized by 31P‐NMR spectroscopy, IR spectroscopy, and mass spectrometry. 2 decomposes in solution under elimination of ethane during a few days to form [EtInPSiiPr3]4 ( 3 ) with a cage‐like structure. The analogous arsenic compound [EtInAsSiiPr3]4 ( 4 ) can be prepared by reaction of InEt3 with H2AsSiiPr3. Central structural motif of 3 and 4 is an In4E4 heterocubane like structure (E = P, As), whereas the reaction of InEt3 with H2PSiMe2Thex (Thex = CMe2iPr) yields [EtInPSiMe2Thex]6 ( 5 ) with a hexagonal prismatic structure.  相似文献   

2.
The aromatic osmacyclopropenefuran bicycles [OsTp{κ3‐C1,C2,O‐(C1H2C2CHC(OEt)O)}(PiPr3)]BF4 (Tp=hydridotris(1‐pyrazolyl)borate) and [OsH{κ3‐C1,C2,O‐(C1H2C2CHC(OEt)O)}(CO)(PiPr3)2]BF4, with the metal fragment in a common vertex between the fused three‐ and five‐membered rings, have been prepared via the π‐allene intermediates [OsTp(η2‐CH2=CCHCO2Et)(OCMe2)(PiPr3)]BF4 and [OsH(η2‐CH2=CCHCO2Et)(CO)(OH2)(PiPr3)2]BF4, and their aromaticity analyzed by DFT calculations. The bicycle containing the [OsH(CO)(PiPr3)2]+ metal fragment is a key intermediate in the [OsH(CO)(OH2)2(PiPr3)2]BF4‐catalyzed regioselective anti‐Markovnikov hydration of ethyl buta‐2,3‐dienoate to ethyl 4‐hydroxycrotonate.  相似文献   

3.
The reaction of iPr2Si(PH2)2 ( 1 ) with [Ca{N(SiMe3)2}2(THF)2] at 25 °C in molar ratio 1:1 yields the compound [Ca3{iPr2Si(PH)2}3(THF)6] ( 2 ). Compound 2 consists of two Ca2P3 trigonal bipyramids with one conjoint calcium corner and SiiPr2 bridged phosphorus atoms. In contrast, the same reaction at 60 °C yield the complex [Ca({P(SiiPr2)2PH}2(THF)4] ( 3 ). The isotype strontium compound [Sr({P(SiiPr2)2PH}2(THF)4] ( 4 ) was obtained from the reaction of iPr2Si(PH2)2 with [Sr{N(SiMe3)2}2(DME)2]. The Compounds 2 – 4 were characterised by single crystal X‐ray diffraction, elemental analysis as well as IR and NMR spectroscopic techniques.  相似文献   

4.
A wide range of potential ligand precursors and related compounds have been synthesized from ferrocenyldibromoborane and ferrocenylenebis(dibromoborane) via salt elimination reactions. These comprise ligand precursors suitable for the preparation of (i) ansa‐metallocenes such as [FcB(η1‐C5H5)2] ( 2 ), [FcB(1‐C9H7)2] ( 3 ), [FcB(3‐C9H7)2] ( 4 ) and [1,1′‐fc{B(3‐C9H7)2}2] ( 11 ), (ii) constrained geometry complexes such as [FcB(1‐C9H7)N(H)Ph] ( 7 ) and [FcB(3‐C9H7)N(H)Ph] ( 8 ), (iii) ansa‐diamido complexes such as [FcB(N(H)Ph)2] ( 9 ) as well as (iv) the related compounds [FcB(Br)N(H)tBu] ( 5 ), [FcB(Br)N(H)Ph] ( 6 ), [1,1′‐fc{B(Br)N(SiMe3)2}2] ( 12 ) and [1,1′‐fc{B(Br)NiPr2}2] ( 13 ) (Fc = ferrocenyl, fc = ferrocenylene, C5H5 = cyclopentadienyl, C9H7 = indenyl). All new compounds have been characterised by multinuclear NMR spectroscopic techniques and in the case of 7 and 12 by X‐ray diffraction methods.  相似文献   

5.
Iridium(I) and Iridium(III) Complexes with Triisopropylarsane as Ligand The ethene complex trans‐[IrCl(C2H4)(AsiPr3)2] ( 2 ), which was prepared from [IrCl(C2H4)2]2 and AsiPr3, reacted with CO and Ph2CN2 by displacement of ethene to yield the substitution products trans‐[IrCl(L)(AsiPr3)2] ( 3 : L = CO; 4 : L = N2). UV irradiation of 2 in the presence of acetonitrile gave via intramolecular oxidative addition the hydrido(vinyl)iridium(III) compound [IrHCl(CH=CH2)(CH3CN)(AsiPr3)2] ( 5 ). The reaction of 2 with dihydrogen led under argon to the formation of the octahedral complex [IrH2Cl(C2H4)(AsiPr3)2] ( 7 ), whereas from 2 under 1 bar H2 the ethene‐free compound [IrH2Cl(AsiPr3)2] ( 6 ) was generated. Complex 6 reacted with ethene to afford 7 and with pyridine to give [IrH2Cl(py)(AsiPr3)2] ( 8 ). The mixed arsane(phosphane)iridium(I) compound [IrCl(C2H4)(PiPr3)(AsiPr3)] ( 11 ) was prepared either from the dinuclear complex [IrCl(C2H4)(PiPr3)]2 ( 9 ) and AsiPr3 or by ligand exchange from [IrCl(C2H4)(PiPr3)(SbiPr3)] ( 10 ) und triisopropylarsane. The molecular structure of 5 was determined by X‐ray crystallography.  相似文献   

6.
Reaction of potassium salt of N‐aryliminopyrrole ligand [2‐(2, 6‐iPr2C6H3N=CH)–C4H3NK] ( 1 ) with samarium tris‐boro‐hydride [Sm(BH4)3(THF)3] gave a samarium ate complex [η2‐{2‐(2, 6‐iPr2C6H3N=CH)–C4H3N}3Sm(η1‐BH4){K(THF)6] ( 2 ); whereas similar treatment with erbium borohydride [Er(BH4)3(THF)3] afforded the mono(iminopyrrolyl) complex [η2‐{2‐(2, 6‐iPr2C6H3N=CH)–C4H3N}Er(η3‐BH4)2(THF)2] ( 3 ). In the solid‐state structures, the samarium complex 2 shows a rarely observed η1 and the erbium complex 3 shows a usual η3 coordination mode of the borohydrido ligand.  相似文献   

7.
The Dihydridoiridium(III) Complex [IrH2Cl(P i Pr3)2] as a Molecular Building Block for Unsymmetrical Binuclear Rhodium–Iridium and Iridium–Iridium Compounds The title compound [IrH2Cl(PiPr3)2] ( 3 ) reacts with the chloro‐bridged dimers [RhCl(PiPr3)2]2 ( 1 ) and [IrCl(C8H14)(PiPr3)]2 ( 5 ) by cleavage of the Cl‐bridges to give the unsymmetrical binuclear complexes 4 and 6 with Rh(μ‐Cl)2Ir and Ir(μ‐Cl)2Ir as the central building block. The reactions of 3 with the bis(cyclooctene) and (1,5‐cyclooctadiene) compounds [MCl(C8H14)2]2 ( 7 , 8 ) and [MCl(η4‐C8H12)]2 ( 9 , 10 ) (M = Rh, Ir) occur analogously and afford the rhodium(I)‐iridium(III) and iridium(I)‐iridium(III) complexes 11 – 14 in 70–80% yield. Treatment of [(η4‐C8H12)M(μ‐Cl)2IrH2(PiPr3)2] ( 13 , 14 ) with phenylacetylene leads to the formation of the substitution products [(η4‐C8H12)M(μ‐Cl)2IrH(C≡CPh)(PiPr3)2] ( 15 , 16 ) without changing the central molecular core. Similarly, the compound [(η4‐C8H12)Rh(μ‐Br)2IrH(C≡CPh)(PiPr3)2] ( 18 ) has been prepared; it was characterized by X‐ray crystallography.  相似文献   

8.
Reaction of N-heterocyclic carbene (NHC)-stabilized PGeP-type germylene Ge{o-(PiPr2)C6H4}2MeIiPr ( 1 ) (MeIiPr=1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) with Ni(cod)2 gave pincer germylene complex Ni[Ge{o-(PiPr2)C6H4}2](MeIiPr) ( 2 ), in which the Ge center of 2 is significantly pyramidalized. Theoretical calculation on 2 predicted the ambiphilicity of the germanium center, which was confirmed by reactivity studies. Thus, complex 2 reacted with both Lewis base MeIMe (MeIMe=1,3,4,5-tetramethylimidazol-2-ylidene) and Lewis acid BH3⋅SMe2 at the germanium center to afford the adducts Ni[Ge{o-(PiPr2)C6H4}2MeIMe](MeIiPr) ( 3 ) and Ni[Ge{o-(PiPr2)C6H4}2⋅BH3](MeIiPr) ( 4 ), respectively. Furthermore, the former was slowly converted to dinuclear complex Ni2[Ge{o-(PiPr2)C6H4}2]2(MeIMe)2 ( 5 ) at room temperature. Complex 5 can be regarded as a dimer of the MeIMe analog of 2 with a Ni-Ge-Ge-Ni linkage.  相似文献   

9.
Synthesis, Structure, and Photochemical Behavior of Olefine Iridium(I) Complexes with Acetylacetonato Ligands The bis(ethene) complex [Ir(κ2‐acac)(C2H4)2] ( 1 ) reacts with tertiary phosphanes to give the monosubstitution products [Ir(κ2‐acac)(C2H4)(PR3)] ( 2 – 5 ). While 2 (R = iPr) is inert toward PiPr3, the reaction of 2 with diphenylacetylene affords the π‐alkyne complex [Ir(κ2‐acac)(C2Ph2)(PiPr3)] ( 6 ). Treatment of [IrCl(C2H4)4] with C‐functionalized acetylacetonates yields the compounds [Ir(κ2‐acacR1,2)(C2H4)2] ( 8 , 9 ), which react with PiPr3 to give [Ir(κ2‐acacR1,2)(C2H4)(PiPr3)] ( 10 , 11 ) by displacement of one ethene ligand. UV irradiation of 5 (PR3 = iPr2PCH2CO2Me) and 11 (R2 = (CH2)3CO2Me) leads, after addition of PiPr3, to the formation of the hydrido(vinyl)iridium(III) complexes 7 and 12 . The reaction of 2 with the ethene derivatives CH2=CHR (R = CN, OC(O)Me, C(O)Me) affords the compounds [Ir(κ2‐acac)(CH2=CHR)(PiPr3)] ( 13 – 15 ), which on photolysis in the presence of PiPr3 also undergo an intramolecular C–H activation. In contrast, the analogous complexes [Ir(κ2‐acac)(olefin)(PiPr3)] (olefin = (E)‐C2H2(CO2Me)2 16 , (Z)‐C2H2(CO2Me)2 17 ) are photochemically inert.  相似文献   

10.
Crystals of mononuclear tris[bis(2,6‐diisopropylphenyl) phosphato‐κO]pentakis(methanol‐κO)lanthanide methanol monosolvates of lanthanum, [La(C24H34O4P)3(CH3OH)5]·CH3OH, ( 1 ), cerium, [Ce(C24H34O4P)3(CH3OH)5]·CH3OH, ( 2 ), and neodymium, [Nd(C24H34O4P)3(CH3OH)5]·CH3OH, ( 3 ), have been obtained by reactions between LnCl3(H2O)n (n = 6 or 7) and lithium bis(2,6‐diisopropylphenyl) phosphate in a 1:3 molar ratio in methanol media. Compounds ( 1 )–( 3 ) crystallize in the monoclinic P21/c space group and have isomorphous crystal structures. All three bis(2,6‐diisopropylphenyl) phosphate ligands display a κO‐monodentate coordination mode. The coordination number of the metal atom is 8. Each [Ln{O2P(O‐2,6‐iPr2C6H3)2}3(CH3OH)5] molecular unit exhibits four intramolecular O—H…O hydrogen bonds, forming six‐membered rings. The unit forms two intermolecular O—H…O hydrogen bonds with one noncoordinating methanol molecule. All six hydroxy H atoms are involved in hydrogen bonding within the [Ln{O2P(O‐2,6‐iPr2C6H3)2}3(CH3OH)5]·CH3OH unit. This, along with the high steric hindrance induced by the three bulky diaryl phosphate ligands, prevents the formation of a hydrogen‐bond network. Complexes ( 1 )–( 3 ) exhibit disorder of two of the isopropyl groups of the phosphate ligands. The cerium compound ( 2 ) demonstrates an essential catalytic inhibition in the thermal decomposition of polydimethylsiloxane in air at 573 K. Catalytic systems based on the neodymium complex tris[bis(2,6‐diisopropylphenyl) phosphato‐κO]neodymium, ( 3′ ), which was obtained as a dry powder of ( 3 ) upon removal of methanol, display a high catalytic activity in isoprene and butadiene polymerization.  相似文献   

11.
The synthesis and full characterization of α-silylated (α-SiCPs; 1 – 7 ) and α-germylated (α-GeCPs; 11 – 13 ) phosphorus ylides bearing one chloride substituent R3PC(R1)E(Cl)R22 (R=Ph; R1=Me, Et, Ph; R2=Me, Et, iPr, Mes; E=Si, Ge) is presented. The molecular structures were determined by X-ray diffraction studies. The title compounds were applied in halide abstraction studies in order to access cationic species. The reaction of Ph3PC(Me)Si(Cl)Me2 ( 1 ) with Na[B(C6F5)4] furnished the dimeric phosphonium-like dication [Ph3PC(Me)SiMe2]2[B(C6F5)4]2 ( 8 ). The highly reactive, mesityl- or iPr-substituted cationic species [Ph3PC(Me)SiMes2][B(C6F5)4] ( 9 ) and [Ph3PC(Et)SiiPr2][B(C6F5)4] ( 10 ) could be characterized by NMR spectroscopy. Carrying out the halide abstraction reaction in the sterically demanding ether iPr2O afforded the protonated α-SiCP [Ph3PCH(Et)Si(Cl)iPr2][B(C6F5)4] ( 6 dec ) by sodium-mediated basic ether decomposition, whereas successfully synthesized [Ph3PC(Et)SiiPr2][B(C6F5)4] ( 10 ) readily cleaves the F−C bond in fluorobenzene. Thus, the ambiphilic character of α-SiCPs is clearly demonstrated. The less reactive germanium analogue [Ph3PC(Me)GeMes2][B{3,5-(CF3)2C6H3}4] ( 14 ) was obtained by treating 11 with Na[B{3,5-(CF3)2C6H3}4] and fully characterized including by X-ray diffraction analysis. Structural parameters indicate a strong CYlide−Ge interaction with high double bond character, and consequently the C−E (E=Si, Ge) bonds in 9 , 10 and 14 were analyzed with NBO and AIM methods.  相似文献   

12.
This paper describes the formation of new platinacyclic complexes derived from the phosphine ligands PiPr2Xyl, PMeXyl2, and PMe2Ar (Xyl=2,6‐Me2C6H3 and Ar=2,6‐(2,6‐Me2C6H3)2‐C6H3) as well as reactivity studies of the trans‐[Pt(C^P)2] bis‐metallacyclic complex 1 a derived from PiPr2Xyl. Protonation of compound 1 a with [H(OEt2)2][BArF] (BArF=B[3,5‐(CF3)2C6H3]4) forms a cationic δ‐agostic structure 4 a , whereas α‐hydride abstraction employing [Ph3C][PF6] produces a cationic platinum carbene trans‐[Pt{PiPr2(2,6‐CH(Me)C6H3}{PiPr2(2,6‐CH2(Me)C6H3}][PF6] ( 8 ). Compounds 4 a and 8 react with H2 to yield the same 1:3 equilibrium mixture of 4 a and trans‐[PtH(PiPr2Xyl)2][BArF] ( 6 ), in which one of the phosphine ligands participates in a δ‐agostic interaction. DFT calculations reveal that H2 activation by 8 occurs at the highly electrophilic alkylidene terminus with no participation of the metal. The two compounds 4 a and 8 experience C–C coupling reactions of a different nature. Thus, 4 a gives rise to complex trans‐[PtH{(E)‐1,2‐bis(2‐(PiPr2)‐3‐MeC6H3)CH?CH}] ( 7 ) that contains a tridentate diphosphine–alkene ligand, through agostic C?H oxidative cleavage and C–C reductive coupling steps, whereas the C–C coupling reaction in 8 involves classical migratory insertion of its [Pt?CH] and [Pt?CH2] bonds promoted by platinum coordination of CO or CNXyl. The mechanisms of the C?C bond‐forming reactions have also been investigated by computational methods.  相似文献   

13.
New Copper Complexes Containing Phosphaalkene Ligands. Molecular Structure of [Cu{P(Mes*)C(NMe2)2}2]BF4 (Mes* = 2,4,6‐tBu3C6H2) Reaction of equimolar amounts of the inversely polarized phosphaalkene tBuP=C(NMe2)2 ( 1a ) and copper(I) bromide or copper(I) iodide, respectively, affords complexes [Cu3X3{μ‐P(tBu)C(NMe2)2}3] ( 2 ) (X =Br) and ( 3 ) (X = I) as the formal result of the cyclotrimerization of a 1:1‐adduct. Treatment of 1a with [Cu(L)Cl] (L = PiPr3; SbiPr3) leads to the formation of compounds [CuCl(L){P(tBu)C(NMe2)2}] ( 4a ) (L = PiPr3) and ( 4b ) (L = SbiPr3), respectively. Reaction of [(MeCN)4Cu]BF4 with two equivalents of PhP=C(NMe2)2 ( 1b ) yields complex [Cu{P(Ph)C(NMe2)2}2]BF4 ( 5b ). Similarly, compounds [Cu{P(Aryl)C(NMe2)2}2]BF4 ( 5c (Aryl = Mes and 5d (Aryl = Mes*)) are obtained from ArylP=C(NMe2)2 ( 1c : Aryl = Mes; 1d : Mes*) and [(MeCN)4Cu]BF4 in the presence of SbiPr3. Complexes 2 , 3 , 4a , 4b , and 5b‐5d are characterized by means of elemental analyses and spectroscopy (1H‐, 13C{1H}‐, 31P{1H}‐NMR). The molecular structure of 5d is determined by X‐ray diffraction analysis.  相似文献   

14.
In the present redetermination of the complex cis‐tetra­carbonyl­bis­(tri­cyclo­hexyl­phosphine)molybdenum(0), (I), [Mo(C18H33P)2(CO)4] or cis‐{η1‐[P(C6H11)3]2}Mo(CO)4, the Mo atom has a distorted octahedral geometry with a large P—Mo—P angle of 104.8 (1)°. A strong trans influence on the carbonyls in (I) is seen in a shortening of the Mo—C and a lengthening of the C—O distances opposite the phosphines compared with those that are cis. This influence is greatly diminished in the complex penta­carbonyl­(tri­cyclo­hexyl­phosphine)­molyb­denum(0), (II), [Mo(C18H33P)(CO)5] or {η1‐[P(C6H11)3]}­Mo(CO)5, the core of which has a slightly distorted C4v geometry.  相似文献   

15.
The syntheses and molecular structures, as determined by single‐crystal X‐ray diffraction analysis, of the first intramolecularly [4+2]‐coordinated tetraorganolead compound {4‐t‐Bu‐2, 6‐[P(O)(OEt)2]2C6H2}PbPh3 ( 2 ) and the triphenyllead chloride adduct of the first intramolecularly coordinated benzoxaphosphaplumbole {[1(Pb), 3(P)‐Pb(Ph)2OP(O)(OEt)‐5‐t‐Bu‐7‐P(O)(OEt)2]C6H2·Ph3PbCl} ( 3a ) are reported. The reaction of 2 with [Ph3C]+ [PF6] and p‐MeC6H4SO3H, respectively, provides the triorganolead salts {4‐t‐Bu‐2, 6‐[P(O)(OEt)2]2C6H2}PbPh2+X ( 4 , X = PF6; 4a , X = p‐MeC6H4SO3). Reaction of 2 with bromine and hydrogen chloride, respectively, gives the diorganolead dihalides {4‐t‐Bu‐2, 6‐[P(O)(OEt)2]2C6H2}PbPhX2 ( 5 , X = Br; 6 , X = Cl).  相似文献   

16.
A chemically non‐innocent pyrrole‐based trianionic (ONO)3? pincer ligand within [(pyr‐ONO)TiCl(thf)2] ( 2 ) can access the dianionic [(3H‐pyr‐ONO)TiCl2(thf)] ( 1‐THF ) and monoanionic [(3H,4H‐pyr‐ONO)TiCl2(OEt2)][B{3,5‐(CF3)2C6H3}4] ( 3‐Et2O ) states through remote protonation of the pyrrole γ‐C π‐bonds. The homoleptic [(3H‐pyr‐ONO)2Zr] ( 4 ) was synthesized and characterized by X‐ray diffraction and NMR spectroscopy in solution. The protonation of 4 by [H(OEt2)2][B{C6H3(CF3)2}4] yields [(3H,4H‐pyr‐ONO)(3H‐pyr‐ONO)Zr][B{3,5‐(CF3)2C6H3}4] ( 5 ), thus demonstrating the storage of three protons.  相似文献   

17.
Some mono‐ and dinuclear Hydroxoiridium(I) Complexes The chloro‐bridged iridium(I) compound [Ir2(μ‐Cl)2(C8H14)4] ( 1 ) reacts in the biphasic system benzene/water with KOH in the presence of [NEt3(CH2Ph)]Cl (TEBA) to give the corresponding dinuclear complex [Ir2(μ‐OH)2(C8H14)4] ( 2 ). Stepwise substitution of the cyclooctene ligands by PiPr3 and ethene affords via the intermediate [Ir2(μ‐OH)2(C8H14)2(PiPr3)2] (isolated as a mixture of isomers 3 a , b ) the product [Ir2(μ‐OH)2(C2H4)2(PiPr3)2] ( 4 ) in excellent yield. Reaction of 4 with PiPr3in the molar ratio of 1:2 leads to the formation of the mononuclear compound trans‐[Ir(OH)(C2H4)(PiPr3)2] ( 5 ), the ethene ligand of which cannot be replaced by CPh2 upon treatment with Ph2CN2.  相似文献   

18.
Synthesis and Metalation of the Diaminosiloxane O(SiiPr2NH2)2 The 1,3‐diaminoldisiloxane O(SiiPr2NH2)2 ( 1 ) was obtained from the reaction of O(SiiPr2Cl)2 with NH3. The reactions of 1 with AlEt3 or GaEt3 produced the compounds [O{SiiPr2N(H)MEt2}{SiiPr2NMEt}]2 ( 2 : M = Al; 3 : M = Ga). The crystal structures of 2 and 3 were determined by single crystal X‐ray diffraction, showing a polycyclic M4N4Si4O2 core structure of these molecules.  相似文献   

19.
The reactions of K[(2,6‐iPr2C6H3‐O)2POO] either with LaCl3(H2O)7 or with Nd(NO3)3(H2O)6 in a 3:1 molar ratio, followed by vacuum drying and recrystallization from alkanes, have led to the formation of diaquapentakis[bis(2,6‐diisopropylphenyl) phosphato]‐μ‐hydroxido‐dilanthanum hexane disolvate, [La2(C24H34O4P)5(OH)(H2O)2]·2C6H14, ( 1 )·2(hexane), and tetraaquatetrakis[bis(2,6‐diisopropylphenyl) phosphato]‐μ‐hydroxido‐dineodymium bis(2,6‐diisopropylphenyl) phosphate heptane disolvate, [Nd2(C24H34O4P)4(OH)(H2O)4]·2C6H14, ( 2 )·2(heptane). The compounds crystalize in the P21/n and P space groups, respectively. The diaryl‐substituted organophosphate ligand exhibits three different coordination modes, viz. κ2O,O′‐terminal [in ( 1 ) and ( 2 )], κO‐terminal [in ( 1 )] and μ2‐κ1O1O′‐bridging [in ( 1 ) and ( 2 )]. Binuclear structures ( 1 ) and ( 2 ) are similar and have the same unique Ln2(μ‐OH)(μ‐OPO)2 core. The structure of ( 2 ) consists of an [Nd2{(2,6‐iPr2C6H3‐O)2POO}4(OH)(H2O)4]+ cation and a [(2,6‐iPr2C6H3‐O)2POO] anion, which are bound via four intermolecular O—H…O hydrogen bonds. The molecular structure of ( 1 ) displays two O—H…O hydrogen bonds between OH/H2O ligands and a κ1O‐terminal organophosphate ligand, which resembles, to some extent, the `free' [(2,6‐iPr2C6H3‐O)2POO] anion in ( 2 ). NMR studies have shown that the formation of ( 1 ) undoubtedly occurs due to intramolecular hydrolysis during vacuum drying of the aqueous La tris(phosphate) complex. Catalytic experiments have demonstrated that the presence of the coordinated hydroxide anion and water molecules in precatalyst ( 2 ) substantially lowered the catalytic activity of the system prepared from ( 2 ) in butadiene and isoprene polymerization compared to the catalytic system based on the neodymium tris[bis(2,6‐diisopropylphenyl) phosphate] complex, which contains neither OH nor H2O ligands.  相似文献   

20.
The reaction of the organolithium derivative {2, 6‐[P(O)(OEt)2]2‐4‐tert‐Bu‐C6H2}Li ( 1 ‐Li) with [Ph3C]+[PF6] gave the substituted biphenyl derivative 4‐[(C6H5)2CH]‐4′‐[tert‐Bu]‐2′, 6′‐[P(O)(OEt)2]2‐1, 1′‐biphenyl ( 5 ) which was characterized by 1H, 13C and 31P NMR spectroscopy and single crystal X‐ray analysis. Ab initio MO‐calculations reveal the intramolecular O···C distances in 5 of 2.952(4) and 2.988(5)Å being shorter than the sum of the van der Waals radii of oxygen and carbon to be the result of crystal packing effects. Also reported are the synthesis and structure of the bromine‐substituted derivative {2, 6‐[P(O)(OEt)2]2‐4‐tert‐Bu]C6H2}Br ( 9 ) and the structure of the protonated ligand 5‐tert‐Bu‐1, 3‐[P(O)(OEt)2]2C6H3 ( 1 ‐H). The structures of 1 ‐H, 5 , and 9 are compared with those of related metal‐substituted derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号