首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protonation and ZnII/CuII complexation constants of tripodal polyamine ligand N1‐(2‐aminoethyl)‐N1‐(1H‐imidazol‐4‐ylmethyl)‐ethane‐1,2‐diamine (HL) were determined by potentiometric titration. Three new compounds, i.e. [H3(HL)](ClO4)3 ( 5 ), [Zn(HL)Cl](ClO4) ( 6 ) and {[Zn(L)](ClO4)}n ( 7 ) were obtained by reactions of HL · 4HCl with Zn(ClO4)2 · 6H2O under different reaction pH, and they were compared with the corresponding CuII complexes reported previously. The results indicate that the reaction pH and metal ions have remarkable influence on the formation and structure of the complexes.  相似文献   

2.
Three novel ligands H4Ln (n = 1–3) and their copper(II) and zinc(II) complexes were prepared and characterized on the basis of elemental analyses, molar conductivity, 1H NMR, UV/Vis, and IR spectroscopy as well as mass spectrometry. DNA binding properties of the ligands and their complexes were investigated by absorption spectroscopy, ethidium bromide displacement experiments, and viscosity measurements. The experimental results indicate that the new ligands and their complexes can bind to DNA and the binding affinities of the complexes are higher than those of the ligands. In addition, the antioxidant activity of the ligands and complexes was determined by superoxide and hydroxyl radical scavenging methods in vitro, indicating that the complexes exhibit more effective antioxidant activity than the ligands alone.  相似文献   

3.
Eight metal(II) complexes based on imidazo[4, 5‐f]‐1, 10‐phenanthroline (HIMP) and bridging dicarboxylato ligands such as 4, 4′‐biphenyldicarboxylic acid (H2BPDC), 1, 4‐benzenedicarboxylic acid (H2BDC), thiophene‐2, 5‐dicarboxylic acid (H2TDC), and 2, 6‐naphthalenedicarboxylic acid (H2NDC) were hydrothermally synthesized and structurally characterized by single‐crystal X‐ray diffraction. Complexes 1 , 3 , 6 , and 7 are molecular dinuclear metal complexes. Complexes 2 , 4 , and 5 exhibit chain‐like structures. Compound 8 shows a novel 3D architecture, in which ZnII dimers are connected by four NDC2– anions. In the metal(II) complexes, HIMP exhibits a similar chelating coordination mode. Different π ··· π stacking interactions are observed in the complexes. The emission of HIMP is completely quenched in complexes 1 – 4 due to the strong π ··· π stacking interactions in the structures. Complexes 5 – 8 exhibit different photoluminescence properties. Firstly, we quantitatively investigated the effect of the strong HIMP–HIMP stacking interactions on the emission quenching of HIMP in the metal complexes. It was found that a higher extent of π ··· π stacking interactions in the complexes resulted in a higher extent of the emission quenching of HIMP. The introduction of aromatic conjugated carboxylate groups into metal(II)‐HIMP complexes changed the extent of the strong π ··· π stacking interactions in the structures and thus the photoluminescence properties of the complexes.  相似文献   

4.
Reactions of [Cu(NCMe)4]+ with stoichiometric amount of diphosphine R2P–(C6H4)n–PR2, (R = NC4H4, n = 1; R = Ph, n = 1, 2, 3) or tri‐phosphine 1, 3, 5‐(PPh2–C6H4–)3–C6H3 ligands give the corresponding di‐ or trinuclear copper(I) acetonitrile‐phosphine complexes 1 – 5 . Substitution of the labile acetonitrile groups with chelating aromatic diimines – 2, 2′‐bipyridine (bpy), 1, 10‐phenanthroline (phen), 5, 6‐dimethyl‐1, 10‐phenanthroline (dmp), 5, 6‐dibromo‐1, 10‐phenanthroline (phenBr2) – gives the corresponding substituted compounds 6 – 16 . In all complexes 1 – 16 each central CuI atom has tetrahedral configuration completed with two N‐ and two P‐donor groups. The compounds obtained were characterized using elemental analysis, ESI‐MS, X‐ray crystallography, and NMR spectroscopy. All phosphine‐diimine compounds 6 – 16 are photoluminescent at room temperature both in dichloromethane solution and in solid state (λex = 385 nm). In CH2Cl2 solution the maxima of emission bands are found in a range 540–640 nm, and in solid in a similar range 538–620 nm. Emission of 6 – 16 is assigned to the triplet excited state dominated by the charge transfer transitions with contribution of the MLCT character.  相似文献   

5.
Sulfur‐substituted methylmercury compounds [Hg(CH2SR)2]( 1a, R = Me; 1b, R = Ph ) react with aluminium amalgam in refluxing toluene with transmetallation to give homoleptic tris(thiomethyl)aluminium complexes [Al(CH2SR)3]( 2a, R = Me; 2b, R = Ph ) (degree of conversion: >80%, isolated yields: 2a 63%, 2b 41%). Their identities were confirmed by NMR spectros‐copy (1H, 13C) and X‐ray crystal structure analyses. In crystals of compound 2a the aluminium atoms possess a trigonal‐bipyramidal arrangement with the coordination polyhedron defined by three carbon and two sulfur atoms. Two of the three CH2SMe ligands are bridging ligands (μ‐η2; 1kC:2kS), the third one is terminal bound (η1; kC). The structure is polymeric. Crystals are threaded by helical chains built up of six‐membered Al2C2S2 rings. Crystals of 2b are built up of centrosymmetrical dimers with six‐membered Al2C2S2 rings having bridging CH2SPh ligands (μ‐η2; 1kC:2kS). On each Al atom two terminal (η1; kC)CH2SPh ligands are bound. They exhibit quite different Al‐C‐S angles (116.7(4) and 106.5(3)?). Similar values (114.32115.7? and 109.52109.9?) were found in ab initio calculations of model compounds [{Al(CH2SR)3}2]( 3a, R=H; 3b, R=Me; 3c, R=CH=CH2 ). A conformational energy diagram for rotation of one of the terminal CH2SH ligand in the parent compound 3a around the Al‐C bond is discussed in terms of repulsive interactions of lone electron pairs of sulfur atoms.  相似文献   

6.
Two novel five‐coordinate zinc(II) complexes with the tripod ligand tris(N‐methylbenzimidazol‐2‐ylmethyl)amine (Mentb) and two different α,β‐unsaturated carboxylates, with the composition [Zn(Mentb)(acrylate)] (ClO4)·DMF·1.5CH3OH ( 1 ) and [Zn(Mentb)(cinnamate)](ClO4)·2DMF·0.5CH3OH ( 2 ), were synthesized and characterized by means of elemental analyses, electrical conductivity measurements, IR, UV, and 1H NMR spectra. The crystal structure of two complexes have been determined by a single‐crystal X‐ray diffraction method, and show that the ZnII atom is bonded to a Mentb ligand and a α,β‐unsaturated carboxylate molecule through four N atoms and one O atom, resulting in a distorted trigonal‐bipyramidal coordination [τ( 1 ) = 0.853, τ( 2 ) = 0.855], with approximate C3 symmetry.  相似文献   

7.
A series of [(4‐methylphenyl)sulfonyl]‐1H‐amido‐2‐phenyl‐2‐oxazoline ligands, HTs‐ROz, has been synthesized by the reaction of substituted 2‐(2‐aminophenyl)oxazolines and p‐toluensulfonyl chloride. The electrochemical oxidation of a sacrificial zinc anode in an acetonitrile solution of the corresponding ligand gave compounds of general formula [Zn(Ts‐ROz)2]. All complexes have been characterized by microanalysis, IR and 1H NMR spectroscopy and single‐crystal X‐ray diffraction. In all cases, the metal atom is coordinated by the nitrogen atoms of two monoanionic ligands.  相似文献   

8.
A series of new 3‐(arylhydrazono)pentane‐2, 4‐diones ( 1 ‐ 6 ) synthesized from pentane‐2, 4‐dione and diazonium salts of respective anilines using the procedure of Japp‐Klingemann are described. Complexes with CuII and NiII salts are prepared ( 7 ‐ 10 , respectively). Spectroscopic properties of these compounds have been studied and X‐ray crystal structures of selected hydrazones ( 3 , 4 , 6 ) and of the hydrazone complexes ( 7 ‐ 10 ) are reported. The structures of the uncomplexed hydrazones feature an intramolecular N‐H···O interaction to yield a six‐membered H‐bond ring reflecting preference of the hydrazone tautomeric structure. All the complexes are mononuclear 2:1 (L:M) structures of six‐membered chelate type involving N2O2 binding sites that are quadratic arranged but differ in the entire coordination environment dependent on the metal and the ligand substitution including distorted octahedral and quadratic pyramidal coordination geometries in the CuII complexes 7 and 8 or nearly regular square planar coordination geometry in the NiII complexes 9 and 10 , respectively. In the crystal packings, strong and weak H‐bond interactions cause supramolecular network structures.  相似文献   

9.
The reactions of PhCH2SiMe3 ( 1 ), PhCH2SiMe2tBu ( 2 ), PhCH2SiMe2Ph ( 3 ), 3,5‐Me2C6H3CH2SiMe3 ( 4 ), and 3,5‐Me2C6H3CH2SiMe2tBu ( 5 ) with nBuLi in tetramethylethylenediamine (tmeda) afford the corresponding lithium complexes [Li(tmeda)][CHRSiMe2R′] (R, R′ = Ph, Me ( 6 ), Ph, tBu ( 7 ), Ph, Ph ( 8 ), 3,5‐Me2C6H3, Me ( 9 ), and 3,5‐Me2C6H3, tBu ( 10 )), respectively. The new compounds 5 , 7 , 8 , 9 and 10 have been characterized by 1H and 13C NMR spectroscopy, compounds 7 , 8 and 9 also by X‐ray structure analysis.  相似文献   

10.
Four Schiff base complexes, [Zn2L2(NCS)2] ( 1 ), [Cd2L2(NCS)2]n ( 2 ), [Zn4L2(N3)2Cl4(OH2)(CH3OH)] ( 3 ), and [Cu4L2(N3)2Cl4(OH2)(CH3OH)] ( 4 ) (where L = 2‐[(2‐dimethylaminoethylimino)methyl]phenol), were synthesized and characterized by elemental analyses, infrared spectroscopy, and single crystal X‐ray determinations. Both 1 and 2 are structurally similar polynuclear complexes. In 1 , each Zn atom has a slightly distorted square‐pyramidal coordination configuration. In the basal plane, the Zn atom is coordinated by one O and two N atoms of one L, and by one O atom of another L. The apical position is occupied by one terminal N atom of a coordinated thiocyanate anion. The Zn···Zn separation is 3.179(3) Å. While in 2 , the Cd1 atom is six‐coordinated in an octahedral coordination. In the equatorial plane, the Cd1 atom is coordinated by one O and two N atoms of one L, and by one O atom of another L. The axial positions are occupied by the terminal N and S atoms from two bridging thiocyanate anions. The coordination of Cd2 atom in 2 is similar to those of the zinc atoms in 1 . The Cd···Cd separation is 3.425(2) Å. Both 3 and 4 are novel tetra‐nuclear complexes. Each metal atom in the complexes has a slightly distorted square‐pyramidal coordination. The arrangements of the terminal metal atoms are similar, involving one O and two N atoms of one L ligand and one bridging Cl atom defining the basal plane, and one O atom of a coordinated water molecule or MeOH molecule occupying the apical position. The coordinations of the central metal atoms are also similar. The basal plane of each metal atom involves one O atom of one L ligand, one terminal Cl atom, and two terminal N atoms from two bridging azide groups. The apical position is occupied by a bridging Cl atom which also acts as a basal donor atom of the terminal metal atom. The Schiff base ligand and the four complexes showed high selectivity and antibacterial activities against most of the bacteria.  相似文献   

11.
12.
[Zn{SSi(OBut)3}2(NH3)]2 ( 1 ) reacts with 2‐picoline or 2,4‐lutidine (L) without elimination of ammonia giving stable monometallic complexes [Zn{SSi(OBut)3}2(NH3)L] ( 3 and 4 ), with two different nitrogen ligands bonded to the metal center. Reaction of (ButO)3SiSH with zinc di(acetylacetonate) in ammonia atmosphere leads to the complex with two ammine ligands [Zn{SSi(OBut)3}2(NH3)2] · MeCN ( 5 ). Molecular and crystal structures of 3 , 4 and 5 have been determined by the single crystal X‐ray structural analysis. All have distorted tetrahedral geometry. The presence of ammonia gives rise to hydrogen bonds, different in all three cases. 3 , 4 , and 5 are the first examples of structurally characterized ammine ligated zinc thiolates.  相似文献   

13.
Four new dinuclear copper(II) complexes have been synthesized and have the general formula [Cu2(L)(H2O)2], where L = GLYDTO [N,N′‐bis(carboxymethyl)dithiooxamide], ALADTO [N,N′‐bis(carboxyethyl)dithiooxamide], VALDTO [N,N′‐bis(1‐carboxy‐2‐methylpropyl)dithiooxamide] and LEUDTO [N,N′‐bis(1‐carboxy‐3‐methylbutyl)dithiooxamide]. The complexes were characterized by elemental analysis as well as by IR, electronic and EPR spectroscopy. These techniques provided evidence for the presence of the CuNO2S chromophore. Magnetic susceptibility measurements on all the complexes in the range 4–300 K show the existence of a dominant antiferromagnetic interaction with ?J values greater than 300 cm?1. Thermal decomposition behaviour of the complexes was studied by thermogravimetry.  相似文献   

14.
1,5‐bis(R)‐3,7‐bis[2‐(pyridine‐2′‐yl)ethyl)‐1,5‐diaza‐3,7‐diphosphacyclooctanes 1 and 2 and their copper(I) complexes 3 and 4 were developed. The butterfly‐shaped copper‐iodide core and unusual P,N‐chelate and P,P‐bridged coordination mode of the heterocyclic ligand in the dinuclear complexes 3 and 4 were revealed. Complexes 3 and 4 display emission in green range of spectra, with lifetimes in a microsecond domain and quantum yields of luminescence in solid‐state up to 38 %. Thermochromic effects found for the phosphorescence of 4 in solutions are ascribed to rigidochromism.  相似文献   

15.
The coordination chemistry of the water soluble phosphane oxide ligand tris[2‐isopropylimidazol‐4(5)‐yl]phosphane oxide, 4‐TIPOiPr, has been explored. A variety of 3d‐metal halide complexes have been prepared and the crystal structures of the solvates [(4‐TIPOiPr)ZnCl2]·MeOH·1/2dioxane ( 1 ·MeOH·1/2dioxane), [(4‐TIPOiPr)CoCl2]·H2O·2dioxane ( 2 ·H2O·2dioxane) and [(4‐TIPOiPr)2Ni(MeOH)2]Cl2·2MeOH ( 3 ·2MeOH) have been determined. All three structures show unprecedented coordination modes of the 4‐TIPOiPr ligand. Both zinc and cobalt complexes are coordinated in a bidentate κ2N fashion, whereas the nickel atom is coordinated by two ligands in a κN,O mode using one imidazolyl substituent and the P=O oxygen atom.  相似文献   

16.
The cobalt(II) complex [CoCl2(2, 6‐iPrC6H3‐BIAO)]2 ( 1 ) of rigid unsymmetrical imine, carbonyl mixed ligand [N‐(2, 6‐diisopropylphenyl)‐imino]acenapthenone] (2, 6‐iPrC6H3‐BIAO) ( L1 ) can be achieved by the reaction of CoCl2 and neutral [N‐(2, 6‐diisopropylphenyl)‐imino]acenapthenone] ligand. When ligand L1 reacted with CuCl in dichloromethane solution, only nitrogen coordinated copper complex [CuCl(2, 6‐iPrC6H3‐BIAO)] ( 2 ) was obtained. In the solid‐state structure, compound 1 is dimeric through the chelating two μ2 chlorine atoms and each cobalt atom adopts either a distorted trigonal bipyramidal or a distorted square pyramidal arrangement. In contrast, the molecular structure of compound 2 reveals that copper is coordinated by imino nitrogen and adopts a linear arrangement around the central metal atom. The crystal structure of the rigid bidentate mixed nitrogen and oxygen ligand (2, 6‐iPrC6H3‐BIAO) ( L1 ) is also reported.  相似文献   

17.
《化学:亚洲杂志》2018,13(19):2868-2880
The reaction of 3,7‐diacetyl‐1,3,7‐triaza‐5‐phosphabicyclo[3.3.1]nonane (DAPTA) with metal salts of CuII or NaI/NiII under mild conditions led to the oxidized phosphane derivative 3,7‐diacetyl‐1,3,7‐triaza‐5‐phosphabicyclo[3.3.1]nonane‐5‐oxide (DAPTA=O) and to the first examples of metal complexes based on the DAPTA=O ligand, that is, [CuII(μ‐CH3COO)2O‐DAPTA=O)]2 ( 1 ) and [Na(1κOO′;2κO‐DAPTA=O)(MeOH)]2(BPh4)2 ( 2 ). The catalytic activity of 1 was tested in the Henry reaction and for the aerobic 2,2,6,6‐tetramethylpiperidin‐1‐oxyl (TEMPO)‐mediated oxidation of benzyl alcohol. Compound 1 was also evaluated as a model system for the catechol oxidase enzyme by using 3,5‐di‐tert‐butylcatechol as the substrate. The kinetic data fitted the Michaelis–Menten equation and enabled the obtainment of a rate constant for the catalytic reaction; this rate constant is among the highest obtained for this substrate with the use of dinuclear CuII complexes. DFT calculations discarded a bridging mode binding type of the substrate and suggested a mixed‐valence CuII/CuI complex intermediate, in which the spin electron density is mostly concentrated at one of the Cu atoms and at the organic ligand.  相似文献   

18.
Two two‐dimensional (2‐D) trz‐based coordination polymers, {[Zn(trz)(mb)]·H2O}n ( 1 ) and {[Zn(trz)(ca)]·H2O}n ( 2 ) (Htrz = 1,2,4‐triazole, Hmb = 4‐methylbenzoic acid, and Hca = trans‐cinnamic acid), have been synthesized by diffusion method and fully structural characterized by elemental analysis, FT‐IR, single‐crystal X‐ray crystallography, TG and fluorescence spectra. Structural analysis reveals that both complexes exhibit the analogous 2‐D ZnII‐trz layer motif with hydrophobic aromatic rings attached on both sides despite their different crystal system and space group (orthorhombic, Pbca for 1 and monoclinic, P21/c for 2 ). Interestingly, the discrete water‐dimer and infinite 1‐D water‐chain were observed to be entrapped in the 2‐D layer of 1 and 2 , respectively, resulted from the different orientation of lattice water molecules as well as the patterns of hydrogen bonds involved. In addition, their similiar thermal behaviors and fluorescence emissions originated from intraligand electronic transfer were also investigated and compared.  相似文献   

19.
The synthesis and characterization of mononuclear tetrakis‐aziridine nickel(II ) and copper(II ) complexes as well as of a dinuclear bis‐aziridine copper(II ) complex are described. The reactions of anhydrous MCl2 (M = NiII, CuII) with aziridine (= az = C2H4NH, C2H3MeNH, CH2CMe2NH) in CH2Cl2 at room temperature in a 1:5 and 1:2 molar ratio, respectively, afforded the tetrakis‐aziridine complexes [M(az)4Cl2] (M = Ni, Cu) or the dimeric bis‐aziridine complex [Cu(az)2Cl2]2. After purification, all of the complexes were fully characterized. The single crystal structure analysis revealed two different coordination modes. Whereas both nickel(II ) complexes can be classified as showing an elongated octahedral structure, copper(II ) complexes show either an elongated octahedral or a square pyramidal arrangement forming dimers with chlorido bridges in axial positions. Furthermore, the results of magnetic measurements of the nickel(II ) and copper(II ) compounds are presented.  相似文献   

20.
Sulfathiazole (HSTZ) reacts with triethylamine and Ni(CH3COO)2·4H2O in methanol and further with pyridine to give the sulfathiazolato complex [Ni(STZ)2(Py)2]·2Py. In the new chelate complex the deprotonated sulfonamidic nitrogen atom does not take part in the coordination process, apparently retaining the negative charge. Two (STZ)? moieties are symmetrically bonded to the Ni2+ ion through a thiazolyl nitrogen atom and an oxygen atom of the S(O)2 group. Two pyridine molecules accomplish the fairly distorted octahedral coordination at the metal centre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号