首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 933 毫秒
1.
On the Crystal Structure of Melem C6N7(NH2)3 Single crystals of melem ( 1 ) were grown from both DMSO‐solutions and the gas phase. The structure of melem ( 1 ) was solved by single‐crystal X‐ray diffraction (P21/c, Z = 4, a = 741.66(15), b = 862.28(17), c = 1335.9(3) pm, β = 99.91(3)° R1 = 0.037 for 1098 reflections). The structure determination by X‐ray powder diffraction, which has been previously conducted, is in agreement with our data. The increased quality of the structural information allows for a more detailed understanding of the hydrogen bonding network.  相似文献   

2.
The binuclear praseodymium(III) complex with N‐(1‐carboxyethylidene)‐salicylhydrazide (C10H10N2O4, H2L) was prepared in H2O‐C2H5OH mixed solution, and the crystal structure of [Pr2L2(HL)2(H2O)4]·3H2O·C6H6 was determined by X‐ray single crystal diffraction. The crystal complex crystallizes in the triclinic system with space group P‐1, and in the structure each Pr atom is 9‐coordinated by carboxyl O and acyl O and azomethine N atoms of two tridentate ligands to form two stable five‐membered rings sharing one side in keto‐mode and two water molecules. The coordination polyhedron around Pr3+ was described as a monocapped square antiprism geometry. In an individual molecule, four tridentate ligands were coordinated by two negative univalent (HL) and two bivalent forms (L) respectively. Two negative univalent ligands were coordinated via μ2‐bridging mode.  相似文献   

3.
Calcium hydrogenmelonate heptahydrate Ca[HC6N7(NCN)3] · 7H2O was obtained by metathesis reaction in aqueous solution. The structure of the molecular salt was elucidated by single‐crystal X‐ray diffraction. The crystal structure consists of alternating layers of planar monopronated melonate ions, Ca2+ and crystal water molecules. The anions of adjacent layers are staggered so that no π–π stacking occurs. The melonate entities are interconnected by hydrogen bonds within and between the layers. Ca[HC6N7(NCN)3] · 7H2O was investigated by solid‐state NMR and FTIR spectroscopy, TG and DTA measurements.  相似文献   

4.
The magnetic properties of a novel cobalt‐based hydrogen vanadate, Co13.5(OH)6(H0.5VO3.5)2(VO4)6, are reported. This new magnetic material was synthesized in single‐crystal form using a conventional hydrothermal method. Its crystal structure was determined from single‐crystal X‐ray diffraction data and was also characterized by scanning electron microscopy. Its crystal framework has a dumortierite‐like structure consisting of large hexagonal and trigonal channels; the large hexagonal channels contain one‐dimensional chains of face‐sharing CoO6 octahedra linked to the framework by rings of VO4 tetrahedra, while the trigonal channels are occupied by chains of disordered V2O4 pyramidal groups. The magnetic properties of this material were investigated by DC magnetic measurements, which indicate the occurrence of antiferromagnetic interactions.  相似文献   

5.
The zinc(II) compound, [Zn3(HL)6]n ( 1 ) (H2L = 3‐hydroxypyridine‐2‐carboxylic acid) was synthesized by a solvothermal reaction of Zn(NO3)2 · 6H2O and 3‐hydroxypyridine‐2‐carboxylic acid as raw materials. The structure of complex 1 was determined by single‐crystal X‐ray diffraction analysis and further characterized by elemental analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis, as well as powder X‐ray diffraction. X‐ray structure analysis demonstrates that the complex crystallizes in the monoclinic system, space group P21/n. There are three zinc ions in the asymmetric unit, which are either five‐coordinate or six‐coordinate. The asymmetric units are further bridged by the carboxylate of the organic ligands, featuring a 2D framework. The solid state diffuse‐reflectance UV/Vis spectra reveals that complex 1 has semiconducting nature with the energy bandgap (Eg) estimated to be 3.11 eV. The photocatalytic properties of complex 1 in degradation of organic dyes were further investigated. Results showed that the complex could degrade 54 % of the dye methylene blue solution within 120 min under UV irradiation light and reused for five times without the decline of the photocatalytic activity.  相似文献   

6.
The compound [Cu42‐OH)23‐OH)2Cl2(bipy)4]Cl2 · 6H2O ( 1 ) was obtained by recrystallization of [Cu(HB)2(2, 2′‐bipy)] · H2O (H2B = diphenylglycolic acid) from EtOH/CH2Cl2 and their structure has been determined by single‐crystal X‐ray analysis. The cationic complex may be described as based on a Cu4(OH)4 core with a “stepped cubane” structure. The coordination polyhedron around each copper is a distorted square pyramid. The tetranuclear units are linked in the crystal by C‐H…Cl hydrogen bonds and by π‐π interactions between bipyridine rings. IR data are also presented.  相似文献   

7.
Nanostructures of a new coordination polymer of divalent lead with the ligand 2, 9‐dimethyl‐1, 10‐phenanthroline (dmp) containing the first Pb2‐(μ‐ClO4)2 motif, [Pb2(dmp)2(μ‐N3)2(μ‐ClO4)2]n ( 1 ), was synthesized by a sonochemical method that produces the coordination polymers at nano size. The new nanostructure was characterized by scanning electron microscopy, X‐ray powder diffraction, IR, 1H NMR and 13C NMR spectroscopy, and elemental analysis. Compound 1 was structurally characterized by single‐crystal X‐ray diffraction and the single‐crystal X‐ray data shows that the coordination number of PbII ions is six, (PbN4O2), with two N‐donor atoms from aza‐aromatic base ligands and four O‐donors from two perchlorate anions and two N‐donors from two azide anions. It has a “stereo‐chemically active” electron lone pair, and the coordination sphere is hemidirected. The supramolecular features in these complexes are guided and controlled by weak directional intermolecular interactions. The chains interact with each other through π–π stacking interactions creating a 3D framework. The structure of the title complex was optimized by density functional theory calculations. Calculated structural parameters and IR spectra for the title complex are in agreement with the crystal structure. The PbO nanoparticles were obtained by thermolysis of 1 at 180 °C with oleic acid as a surfactant. The average diameter of the nanoparticles was estimated by the Scherrer equation to be 23 nm. The morphology and size of the prepared PbO samples were further observed using SEM.  相似文献   

8.
Two zinc(II) compounds, namely [Zn5(AmTAZ)6(OH)2]n · 2n(NO3) · 6n(H2O) ( 1 ) and [Zn3(AmTAZ)2(mal)2]n ( 2 ) (HAmTAZ = 3‐amino‐1,2,4‐triazole, H2mal = malonic acid), were hydrothermally synthesized and characterized by elemental analysis, IR spectroscopy, and X‐ray diffraction. Single crystal X‐ray diffraction analysis reveals that compound 1 features a 3D framework with dodecahedral cages occupied by free nitrate ions and lattice water molecules and can be reduced into a (4, 8)‐connected flu topological network. Compound 2 features a 3D framework based on two different 1D chains. Moreover, the thermal stabilities and luminescent properties of compounds 1 and 2 were investigated.  相似文献   

9.
The reaction of germanium(II)‐bis(2‐methoxyphenyl)methoxide with methanesulfonic acid provides the germanium(II) sulfonate Ge(CH3SO3)2 ( 1 ), which was characterized by X‐ray diffraction, elemental analysis, NMR spectroscopy, and IR spectroscopy. The decomposition process of 1 was investigated by thermal gravimetric analysis (TGA) and temperature‐dependent X‐ray powder diffraction (PXRD) and both are consistent with the formation of GeO2 as major final product. Single crystal X‐ray diffraction at 110 K revealed the chiral tetragonal space group P41212 and formation of a three‐dimensional (3D) coordination network solid. The 3D network is composed of interconnected twenty four‐membered rings comprising bridging methanesulfonate groups, which link the germanium atoms.  相似文献   

10.
. The complex Hg4(L2)2(NO3)4 ( 1 ) (L2 = morpholin‐4‐ylpyridin‐2‐ylmethyleneamine) has been synthesized and characterized by CHN analysis, IR, and UV/Vis spectroscopy. The crystal structure of 1 was determined using single‐crystal X‐ray diffraction. The crystal structure of 1 contains four mercury atoms, four nitrate anions (two terminal and two bridge ones) and two L2 ligand molecules. A chair shape, six‐membered ring is formed with the sequence OHgHgOHgHg built from Hg–Hg dumbbells and oxygen atoms from the nitrate co‐ligands. In the crystal structure, the asymmetric unit of the compound is built up by one‐half of the molecule. It contains the Hg22+ moiety with a mercury–mercury bonded core, in which one diimine ligand is coordinated to one of the mercury atoms. The nitrate anions act as anisobidentate and bidentate ligands.  相似文献   

11.
Seven 1,4‐phenylenebisphosphonates of monovalent ions, A(HO3PC6H4PO3H2) (A = Li, K, Rb, Cs, Tl, Ag and NH4), were synthesized and characterized by single‐crystal X‐ray diffraction, spectroscopic and thermal methods. These compounds and the reported sodium analogue have four structure types. The sodium compound, one‐dimensional lithium compound and pillared‐layered cesium compounds have different structure types, whereas the potassium, rubidium, thallium, ammonium and silver compounds have a pillared ladder‐like structure. They undergo initial thermal decomposition in the range of 120–270 °C. Moreover, the single crystal X‐ray structure of 1,4‐phenylenebisphosphonic acid was determined.  相似文献   

12.
Since the discovery of electrochemically active LiFePO4, materials with tunnel and layered structures built up of transition metals and polyanions have become the subject of much research. A new quaternary arsenate, sodium calcium trinickel aluminium triarsenate, NaCa1–x Ni3–2x Al2x (AsO4)3 (x = 0.23), was synthesized using the flux method in air at 1023 K and its crystal structure was determined from single‐crystal X‐ray diffraction (XRD) data. This material was also characterized by qualitative energy‐dispersive X‐ray spectroscopy (EDS) analysis and IR spectroscopy. The crystal structure belongs to the α‐CrPO4 type with the space group Imma . The structure is described as a three‐dimensional framework built up of corner‐edge‐sharing NiO6, (Ni,Al)O6 and AsO4 polyhedra, with channels running along the [100] and [010] directions, in which the sodium and calcium cations are located. The proposed structural model has been validated by bond‐valence‐sum (BVS) and charge‐distribution (CHARDI) tools. The sodium ionic conduction pathways in the anionic framework were investigated by means of the bond‐valence site energy (BVSE) model, which predicted that the studied material will probably be a very poor Na+ ion conductor (bond‐valence activation energy ∼7 eV).  相似文献   

13.
Two coordination compounds [Pb4(BDT)3(OH)2(H2O)4]·H2O ( 1 ) and [Mn(H2O)6]·(HBDT)2·2H2O ( 2 ) [H2BDT?5,5′‐(1,4‐phenylene)bis(1H‐tetrazole)] had been hydrothermally synthesized. 1 and 2 had been characterized by single‐crystal X‐ray diffraction, IR, elemental and thermal analyses. Structural analysis reveals that 1 exhibits 2D layer structure extended through BDT with two different coordination modes rings in transverse and vertical. 2 consists of [Mn(H2O)6]2+, free HBDT and water. In addition, 1 and 2 were explored as luminescent materials and additives to promote the thermal decomposition of ammonium perchlorate by differential scanning calorimetry.  相似文献   

14.
In the course of investigations relating to magnesia oxysulfate cement the basic magnesium salt hydrate 3Mg(OH)2 · MgSO4 · 8H2O (3–1–8 phase) was found as a metastable phase in the system Mg(OH)2‐MgSO4‐H2O at room temperature (the 5–1–2 phase is the stable phase) and was characterized by thermal analysis, Raman spectroscopy, and X‐ray powder diffraction. The complex crystal structure of the 3–1–8 phase was determined from high resolution laboratory X‐ray powder diffraction data [space group C2/c, Z = 4, a = 7.8956(1) Å, b = 9.8302(2) Å, c = 20.1769(2) Å, β = 96.2147(16)°, and V = 1556.84(4) Å3]. In the crystal structure of the 3–1–8 phase, parallel double chains of edge‐linked distorted Mg(OH2)2(OH)4 octahedra run along [–110] and [110] direction forming a pattern of crossed rods. Isolated SO4 tetrahedra and interstitial water molecules separate the stacks of parallel double chains.  相似文献   

15.
A new perchlorate salt of melem (2,6,10‐triamino‐s‐heptazine, C6N7(NH2)3) was obtained from an aqueous solution of HClO4 at lower concentration than the ones reported for the synthesis of melemium perchlorate monohydrate (HC6N7(NH2)3)ClO4·H2O. The new salt was identified as melemium melem perchlorate (HC6N7(NH2)3)ClO4·C6N7(NH2)3 representing a melem adduct of water free melemium perchlorate. The crystal structure was solved by single‐crystal X‐ray methods ( , no. 2, Z = 2, a = 892.1(2), b = 992.7(2), c = 1201.5(2) pm, α = 112.30(3), β = 96.96(3), γ = 95.38(3)°, V = 965.8(4)·106 pm3, 4340 data, 387 parameters, R1 = 0.039). Melemium melem perchlorate crystallizes in a layer‐like structure containing both protonated HC6N7(NH2)3 and non protonated C6N7(NH2)3 moieties in the coplanar layers as well as perchlorate ions between them, all of which being interconnected by hydrogen bonds. Vibrational spectroscopic investigations (FTIR and Raman) of the salt were conducted.  相似文献   

16.
The environmentally friendly energetic salt (ATZ)(TNPG) (ATZ = 4‐amino‐1, 2, 4‐triazole, TNPG = trinitrophloroglucinol) was synthesized and characterized by elemental analysis and FT‐IR spectroscopy. The crystal structure was determined by X‐ray single crystal diffraction. It crystallizes in monoclinic space group P21/c and its crystal density is 1.832 g · cm–3. Thermal decomposition mechanisms were investigated through differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In addition, the experimental data showed that the energy of combustion was approximately equal to the energies of combustion of RDX (1, 3, 5‐trinitro‐1, 3, 5‐triazacyclohexane) and HMX (1, 3, 5, 7‐tetranitro‐1, 3, 5, 7‐tetraazocane). The non‐isothermal kinetics parameters were also studied by applying Kissinger's, Ozawa's, and Starink's methods. Determination of the sensitivities revealed higher sensitivities of (ATZ)(TNPG) as compared to (ATZ)(PA) (PA = picrate).  相似文献   

17.
Two new complexes, [Mn2(L)2(H2bta)2(H2O)]n ( 1 ) and [Cu2(L)(H2bta)0.5(H2O)]n ( 2 ) (H4bta=1,2,4,5‐benzene‐tetracarboxylic acid, L=imidazo[4,5‐f][1,10]phenathroline) were prepared under hydrothermal conditions and their structures determined by single‐crystal X‐ray diffration. The X‐ray diffraction reveals that complex 1 , consisting of two crystallographically independent fragments A1 and A2, displays an interesting 3D supramolecular network constructed with ABAB sequence through hydrogen bonding interactions. In complex 2 , the copper atoms connected by the H2bta2? ligands, the chains also are assembled into a 3D honeycomb configuration network formed by moleculars and aromatic π‐π stacking interactions.  相似文献   

18.
A cadmium chiral coordination polymer, formulated as [Cd(R‐cna)]n ( 1 ‐D) was constructed under hydrothermal method. Single‐crystal X‐ray diffraction analysis indicated that 1 ‐D exhibited a 2D layered structure with a point symbol of (47 · 63). 1 ‐D was further characterized by infrared spectra, powder X‐ray diffraction (PXRD), elemental analysis, thermogravimetric analysis (TGA), and circular dichroism spectra (CD). The second‐harmonic generation (SHG) property was investigated. It was also found that the luminescence of 1 ‐D can be quenched by iron ions and trinitrotoluene, indicating its potential application as luminescence sensing material.  相似文献   

19.
IntroductionDuringthepastdecades ,thedevelopmentoftheco ordinationchemistryofmolybdenum(VI)focusedonmet al oxygenclusterscharacterizedbyfascinatingstructural,electrochemical,catalytic ,magnetic ,medicinal,andphotophysicalproperties ,1whichareoffundamentaland…  相似文献   

20.
Two trans‐bis(saccharinato) (sac) complexes of cadmium(II ) with 2‐aminomethylpyridine (ampy) and 2‐aminoethylpyridine (aepy) were synthesized and characterized by means of elemental analysis, FT‐IR spectroscopy and thermal analysis. In addition, their solid‐state structures were determined by single crystal X‐ray diffraction studies. The [Cd(sac)2(ampy)2] ( 1 ) and [Cd(sac)2(aepy)] ( 2 ) complexes consist of neutral monomeric units and crystallize in the orthorhombic (Pbca) and monoclinic (P21/c) crystal systems, respectively. The cadmium(II ) ions in 1 and 2 sit on inversion centres andexhibit distorted octahedral coordination by two sac anions and two aminopyridine ligands. The sac ligands in both complexes are N‐coordinated and located in trans positions, while the ampy and aepy ligands act as a bidentate ligand forming two symmetrically chelate rings around cadmium(II ). IR spectra and thermal decompositions of the complexes are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号