共查询到20条相似文献,搜索用时 0 毫秒
1.
Umut Aydemir Alim Ormeci Horst Borrmann Bodo Bhme Fabio Zürcher Burcu Uslu Thorsten Goebel Walter Schnelle Paul Simon Wilder Carrillo‐Cabrera Frank Haarmann Michael Baitinger Reinhard Nesper Hans Georg von Schnering Yuri Grin 《无机化学与普通化学杂志》2008,634(10):1651-1661
The Zintl phase Ba3Si4 has been synthesized from the elements at 1273 K as a single phase. No homogeneity range has been found. The compound decomposes peritectically at 1307(5) K to BaSi2 and melt. The butterfly‐shaped Si46− Zintl anion in the crystal structure of Ba3Si4 (Pearson symbol tP28, space group P42/mnm, a = 8.5233(3) Å, c = 11.8322(6) Å) shows only slightly different Si‐Si bond lengths of d(Si–Si) = 2.4183(6) Å (1×) and 2.4254(3) Å (4×). The compound is diamagnetic with χ ≈ −50 × 10−6 cm3 mol−1. DC resistivity measurements show a high electrical resistivity (ρ(300 K) ≈ 1.2 × 10−3 Ω m) with positive temperature gradient dρ/dT. The temperature dependence of the isotropic signal shift and the spin‐lattice relaxation times in 29Si NMR spectroscopy confirms the metallic behavior. The experimental results are in accordance with the calculated electronic band structure, which indicates a metal with a low density of states at the Fermi level. The electron localization function (ELF) is used for analysis of chemical bonding. The reaction of solid Ba3Si4 with gaseous HCl leads to the oxidation of the Si46− Zintl anion and yields nanoporous silicon. 相似文献
2.
The binary silicides Eu5Si3 and Yb3Si5 were prepared from the elements in sealed tantalum tubes and their crystal structures were determined from single crystal X-ray data: I4/mcm, a = 791.88(7) pm, c = 1532.2(2) pm, Z = 4, wR2 = 0.0545, 600 F2 values, 16 variables for Eu5Si3 (Cr5B3-type) and P62m, a = 650.8(2) pm, c = 409.2(1) pm, Z = 1, wR2 = 0.0427, 375 F2 values, 12 variables for Yb3Si5 (Th3Pd5 type). The new silicide Eu5Si3 contains isolated silicon atoms and silicon pairs with a Si–Si distance of 242.4 pm. This silicide may be described as a Zintl phase with the formula [5 Eu2+]10+[Si]4–[Si2]6–. The silicon atoms in Yb3Si5 form a two-dimensional planar network with two-connected and three-connected silicon atoms. According to the Zintl-Klemm concept the formula of homogeneous mixed-valent Yb3Si5 may to a first approximation be written as [3 Yb]8+[2 Si–]2–[3 Si2–]6–. Magnetic susceptibility investigations of Eu5Si3 show Curie-Weiss behaviour above 100 K with a magnetic moment of 7.85(5) μB which is close to the free ion value of 7.94 μB for Eu2+. Chemical bonding in Eu5Si3 and Yb3Si5 was investigated by semi-empirical band structure calculations using an extended Hückel hamiltonian. The strongest bonding interactions are found for the Si–Si contacts followed by Eu–Si and Yb–Si, respectively. The main bonding characteristics in Eu5Si3 are antibonding Si12-π* and bonding Eu–Si1 states at the Fermi level. The same holds true for the silicon polyanion in Yb3Si5. 相似文献
3.
Abstract. The ternary Zintl phase Ca3Ag1+xGe3–x (x = 1/3) was synthesized by the high‐temperature solid‐state technique and its crystal structure was refined from single‐crystal diffraction data. The compound Ca3Ag1.32Ge2.68(1) adopts the Sc3NiSi3 type structure, crystal data: space group C2/m, a = 10.813(1) Å, b = 4.5346(4) Å, c = 14.3391(7) Å, β = 110.05(1)° and V = 660.48(10) Å3 for Z = 4. Its structure can be interpreted as an intergrowth of fragments cut from the CaGe (CrB‐type) and the CaAg1+xGe1–x (TiNiSi‐type) structures, and it therefore represents an alkaline‐earth member of the structure series with the general formula R2+nT2X2+n with n = 4. Unlike the rare‐earth homologues that are fully ordered phases, one seventh of the atomic sites in the unit cell of the title compound are mixed occupied (roughly 2/3Ge and 1/3Ag), and this can be explained by the Zintl concept. The alloying of this phase using aluminum metal yielded the isotypic solid solution Ca3(Ag/Al)1+xGe3–x, in which the aluminum for silver substitution is strictly localized in the TiNiSi substructure, revealing the very different functionality of the two building blocks. 相似文献
4.
Igor Veremchuk Aron Wosylus Bodo Böhme Dr. Michael Baitinger Horst Borrmann Yurii Prots Ulrich Burkhardt Ulrich Schwarz Yuri Grin 《无机化学与普通化学杂志》2011,637(10):1281-1286
The clathrate‐I phase Cs8–xGe44+y□2–y (space group Pm$\bar{3}$ n) was prepared by high‐pressure high‐temperature reactions of Cs4Ge4 and α‐Ge. Different reaction conditions were found to have a strong influence on the lattice parameter of the clathrate‐I phase ranging from 10.8070(2) Å to 10.8493(3) Å. A single crystal with composition Cs8Ge44.40(2)□1.60(2) was obtained from a sample with a = 10.8238(2) Å (niobium ampoule, p = 3.4 GPa, Tmax = 1400 °C). Structure analysis based on X‐ray single crystal data shows unambiguously an excess of germanium atoms with respect to the electron balanced composition Cs8Ge44□2 on basis of the Zintl concept. 相似文献
5.
6.
7.
Synthesis,Crystal Structure,and Magnetic Property of New Trispin Ln(III)‐Nitronyl Nitroxide Complexes 下载免费PDF全文
Zhe Fan Yi‐Fang Hou Shu‐Ping Wang Shu‐Tao Yang Jian‐Jun Zhang Shi‐Kao Shi Li‐Na Geng 《Helvetica chimica acta》2016,99(9):732-741
Four Ln(III) complexes based on a new nitronyl nitroxide radical have been synthesized and structurally characterized: {Ln(hfac)3[NITPh(MeO)2]2} (Ln = Eu( 1 ), Gd( 2 ), Tb( 3 ), Dy( 4 ); NITPh(MeO)2 = 2‐(3′,4′‐dimethoxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide; hfac = hexafluoroacetylacetonate). The single‐crystal X‐ray diffraction analysis shows that these complexes have similar mononuclear trispin structures, in which central Ln(III) ion is eight‐coordinated by two O‐atoms from two nitroxide groups and six O‐atoms from three hfac anions. The variable temperature magnetic susceptibility study reveals that there exist ferromagnetic interactions between Gd(III) and the radicals, and antiferromagnetic interactions between two radicals (JGd‐Rad = 3.40 cm?1, JRad‐Rad = ?9.99 cm?1) in complex 2 . Meanwhile, antiferromagnetic interactions are estimated between Eu(III) (or Dy(III)) and radicals in complexes 1 and 4 , and ferromagnetic interaction between Tb(III) and radicals in complex 3 , respectively. 相似文献
8.
Dariusz Wyrzykowski Prof. Dr. Artur Sikorski Julia Kłak Jerzy Mroziński Emilia Styczeń Zygmund Warnke 《无机化学与普通化学杂志》2009,635(8):1249-1253
The crystal structure of a new 3‐methylisoquinolinium[3‐Me(IsoQH)] salt, [3‐Me(IsoQH)][FeCl4], was determined. The iron cation is tetracoordinated by chlorine anions, and it adopts a slightly distorted tetrahedral coordination. In the crystal structure, there are π ··· π stacking interactions between the 3‐methylisoquinolinium cations in an ABAB infinite arrangement, N–H ··· Cl hydrogen bonds, and C–H ··· Cl intermolecular interactions. Magnetic measurements of a powdered sample were carried out. A negative Weiss constant as well as the intermolecular exchange parameter for [3‐Me(IsoQH)][FeCl4] indicate the occurrence of antiferromagnetic interactions transmitted in the crystal lattice. 相似文献
9.
Reaction of alkali metal ozonides (KO3, RbO3 and CsO3) with [18]crown‐6 in liquid ammonia yields compounds of the composition M([18]crown‐6)O3·x NH3 with M = K (x = 2), Rb (x = 1) and Cs (x = 8). The large intermolecular distance between adjacent radical anions in these compounds leads to almost ideal paramagnetic behavior according to Curie's law. Discrepancies concerning the structure of the ozonide anions in the K and Cs compound compared to a former investigation on Rb([18]crown‐6)O3·NH3 have been resolved by means of DFT calculations and a single‐crystal structure redetermination. 相似文献
10.
11.
The Eu? Bi system contains the phases Eu5Bi3, Eu4Bi3 and Eu11Bi10. The structure types of these phases have been determined by powder X-ray diffraction. Crystals of Eu4Bi3 (cubic, space group I4 3d; a = 9.920 Å, Z = 4, T = 130 K, R1/wR2 = 4.86/10.84%) were obtained in low yield by reaction of Eu, Mn, and Bi in the ratio 14:1:11 in a closed niobium tube (heating rate 30°C/h; reaction at 1050°C for 300 h, cooling rate 100°C/h). The crystal structure consists of distorted octahedra made up of six Bi coordinated to a central Eu atom. Eu is also coordinated to a three other Eu atoms and forms a three-dimensional network composed of interconnected rings. The Bi atoms are coordinated to eight Eu atoms. High yields of Eu4Bi3 can be prepared by reacting stoichiometric amount of the elements in a sealed tantalum tube at 1100°C for 24 h. Temperature dependent magnetic susceptibility is consistent with antiferromagnetic behavior with an ordering temperature of 18 K. The data could be fit with the Curie-Weiss law and a moment of 7.38 μB/Eu is obtained, consistent with all Eu atoms being Eu11. Temperature dependent resistivity indicates that Eu4Bi3 is a metal with a room temperature resistance of 1.3 Ωcm. 相似文献
12.
Zintl‐Phase Sr3LiAs2H: Crystal Structure and Chemical Bonding Analysis by the Electron Localizability Approach 下载免费PDF全文
Xian‐Juan Feng Yurii Prots Matej Bobnar Marcus Peter Schmidt Walter Schnelle Prof. Jing‐Tai Zhao Prof. Yuri Grin 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(41):14471-14477
The compound Sr3LiAs2H was synthesized by reaction of elemental strontium, lithium, and arsenic, as well as LiH as hydrogen source. The crystal structure was determined by single‐crystal X‐ray diffraction: space group Pnma; Pearson symbol oP28; a = 12.0340(7), b = 4.4698(2), c = 12.5907(5) Å; V = 677.2(1) Å3; RF = 0.047 for 1021 reflections and with 36 parameters refined. The positions of the hydrogen atoms were first revealed by the electron localizability indicator and subsequently confirmed by crystal structure refinement. In the crystal structure of Sr3LiAs2H the metal atoms are arranged in a Gd3NiSi2‐type motif, whereas the hydrogen atoms are arranged in a distorted tetrahedral environment formed by strontium. The calculated band structure revealed that Sr3LiAs2H is a semiconductor, which is in agreement with its diamagnetic behavior. Thus, Sr3LiAs2H is considered as a (charge‐balanced) Zintl phase. 相似文献
13.
Mehmet Somer Wilder Carrillo‐Cabrera Karl Peters Hans Georg von Schnering 《无机化学与普通化学杂志》2000,626(4):897-904
Synthesis, Crystal Structure, and Vibrational Spectra of Compounds with the Linear Dipnictidoborate (3–) Anions [P–B–P]3–, [As–B–As]3–, and [P–B–As]3– The alkali metal boron compounds M3[BX2] with X = P, As are synthesized from the alkali metals M and the binary components MX or M4X6 and BX in sealed steel ampoules (phosphides) or niobium ampoules (arsenides) at 1000 K. The compounds are obtained as bright yellow prisms (M3[BP2]) or plates (K2Na[BP2]) and yellow‐red prismatic crystals (M3[BAs2], Cs3[BPAs]) which are very sensitive against oxidation and hydrolysis. Three different structure types are formed, namely K2Na[BP2] (C2/m (No. 12); Z = 4; a new mC24 structure type); Na3[BP2] (P21/c (No. 14); Z = 4, β‐Li3[BN2] type), M3[BX2] with M = K, Rb, Cs and X = P, As and Cs3[P–B–As] (C2/c, (No. 15); Z = 4, K3[BP2] type). The bond lengths of the linear [BX2]3– anions are hardly changed and correspond to a Pauling bond order PBO = 1.9 (d(B–P) = 176.7–177.1 pm; d(B–As) = 186.5–188.0 pm). The vibrational spectra confirm the existence of unmixed and mixed units [P–B–P]3–, [As–B–As]3– and [P–B–As]3– with D∞h and C∞v symmetry, respectively. The valence force constants f(B–X) and the corresponding Siebert bond orders, calculated from the frequencies, are discussed and compared with those of the isoelectronic anions and molecules. 相似文献
14.
The Reactions of M[BF4] (M = Li, K) and (C2H5)2O·BF3 with (CH3)3SiCN. Formation of M[BFx(CN)4—x] (M = Li, K; x = 1, 2) and (CH3)3SiNCBFx(CN)3—x, (x = 0, 1) The reaction of M[BF4] (M = Li, K) with (CH3)3SiCN leads selectively, depending on the reaction time and temperature, to the mixed cyanofluoroborates M[BFx(CN)4—x] (x = 1, 2; M = Li, K). By using (C2H5)2O·BF3 the synthesis yields the compounds (CH3)3SiNCBFx(CN)3—x x = 0, 1. The products are characterized by vibrational and NMR‐spectroscopy, as well as by X‐ray diffraction of single‐crystals: Li[BF2(CN)2]·2Me3SiCN Cmc21, a = 24.0851(5), b = 12.8829(3), c = 18.9139(5) Å V = 5868.7(2) Å3, Z = 12, R1 = 4.7%; K[BF2(CN)2] P41212, a = 13.1596(3), c = 38.4183(8) Å, V = 6653.1(3) Å3, Z = 48, R1 = 2.5%; K[BF(CN)3] P1¯, a = 6.519(1), b = 7.319(1), c = 7.633(2) Å, α = 68.02(3), β = 74.70(3), γ = 89.09(3)°, V = 324.3(1) Å3, Z = 2, R1 = 3.6%; Me3SiNCBF(CN)2 Pbca, a = 9.1838(6), b = 13.3094(8), c = 16.840(1) Å, V = 2058.4(2) Å3, Z = 8, R1 = 4.4% 相似文献
15.
In order to investigate the magnetic properties of the solid solution CePt1–xPdxAl the individual compounds were synthesized from the elements using an arc furnace. From x = 0–0.8 the solid solution crystallizes in the orthorhombic TiNiSi‐type structure (Pnma, no. 62; a = 721–722, b = 448–453 and c = 778–779 pm) and for x = 0.9 both the TiNiSi‐ as well as the hexagonal ZrNiAl‐type structures were observed. The solid solution exhibits an interesting magnetic behavior as for small values of x ferromagnetic ordering can be found. At higher palladium content this changes towards an antiferromagnetic ordering. Furthermore the solid solution exhibits a spin‐reorientation (meta‐magnetic step) for x = 0.2–0.7. 相似文献
16.
Sviatoslav Baranets Marion Schfer Svilen Bobev 《Acta Crystallographica. Section C, Structural Chemistry》2019,75(11):1535-1540
Exploratory studies in the systems A–Al–Sn (A = K and Rb) yielded the clathrates K8AlxSn46–x (potassium aluminium stannide) and Rb8AlxSn46–x (rubidium aluminium stannide), both with the cubic type‐I structure (space group Pmn, No. 223; a ? 12.0 Å). The Al:Sn ratio is close to the idealized A8Al8Sn38 composition and it is shown that it can be varied slightly, in the range of ca ±1.5, depending on the experimental conditions. Both the (Sn,Al)20 and the (Sn,Al)24 cages in the structure are fully occupied by the guest alkali metal atoms, i.e. K or Rb. The A8Al8Sn38 formula has a valence electron count that obeys the valence rules and represents an intrinsic semiconductor, while the experimentally determined compositions A8Al8±xSn38?x suggest the synthesized materials to be nearly charge‐balanced Zintl phases, i.e. they are likely to behave as heavily doped p‐ or n‐type semiconductors. 相似文献
17.
Pnictides α‐Ba5P4 and KBa4P5 were prepared by melting the elements. The α‐Ba5P4 compound crystallizes in the orthorhombic system (Sm5Ge4‐type), space group Pnma, Z = 4, a = 8.330(3), b = 16.503(3), c = 8.405(2)Å, it contains two anionic species : P24— dumbbells and P3—. The KBa4P5 compound crystallizes in the tetragonal system, space group P43212, Z = 4, a = 8.559(1), c = 16.102(2)Å, it contains trimers P35— and dumbbells P24—. The crystal structures were solved from single crystal X‐ray data and refined by full‐matrix least‐squares to agreement factors R1 = 0.047 and 0.038, respectively. Using ionic charges, α‐Ba5P4 is formulated as [5Ba2+, 2P3—, P24—] and KBa4P5 as [K+, 4Ba2+, P24—, P35—]. The level of oligomerisation in these structures depends upon the overall valence electron content, bonding within the anionic oligomers has been analyzed on the basis of EHMO calculations and compared to classical or hypervalent bonding in other phosphide compounds. 相似文献
18.
The compounds [M(NH3)8]I2 (M = Eu, Yb) were obtained from reactions in anhydrous liquid ammonia solutions as side products. They were characterized by single-crystal X-ray diffraction and found to be isotypic to the compounds [Ca(NH3)8]X2 (X = Cl, Br, I). The coordination sphere of the lanthanoid(II) cations is not square-antiprismatic but much better described as bicapped trigonal-prismatic. In contrast, quantum-chemical gas-phase calculations show the square-antiprismatic coordination polyhedron (point group S8) to be energetically favored over the bicapped trigonal prism and the latter is not even a true local minimum. Obviously, hydrogen bonding and eventually other weak interactions have an impact on the observed bicapped trigonal-prismatic coordination sphere of the [M(NH3)8]2+ cations in the solid state. 相似文献
19.
Based on an asymmetric 1,2,4‐benzenetricarboxylic acid (H3btc) and 2,2′‐bipyridine (bpy), a new CuII complex, Cu2(H2btc)4(bpy)2 · 8H2O ( 1 ), was synthesized and structurally characterized by single‐crystal X‐ray diffraction, hirshfeld surface (HS) analysis, IR spectroscopy, powder X‐ray analysis, thermal gravimetry analysis (TGA), magnetic susceptibility, EPR measurement, and UV/Vis spectrometry. Complex 1 shows a dinuclear copper structure. The CuII of each dinuclear moiety are in a slightly distorted square‐pyramidal environments. Magnetic susceptibility of 1 shows a ferromagnetic coupling between both metal atoms. The interaction of 1 with bovine serum albumin (BSA) is investigated using UV/Vis, fluorescence spectroscopic methods. The CuII complex shows strong binding propensity in albumin binding study. 相似文献
20.
The solid solution CeRu1–xPdxAl was synthesized for x = 0.1–0.9 from the elements by arc‐melting and subsequent annealing and characterized by powder X‐ray diffraction. All members crystallize in the orthorhombic LaNiAl type structure, space group Pnma. The lattice parameters range from a = 718–722, b = 412–426, and c = 1588–1620 pm, but no linear change of the lattice parameters was found. Magnetic measurements reveal intermediate cerium valences, which change to more trivalent cerium with increasing Pd content. The susceptibility data was interpreted by either the Inter‐Configuration Fluctuation (ICF) model or the Curie‐Weiss law. 相似文献