首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High‐quality Inx Al1–xN (0.71 ≤ xIn ≤ 1.00) nanocolumns (NCs) have been grown on Si(111) substrates by rf‐plasma‐assisted molecular‐beam epitaxy (rf‐MBE). Low‐temperature photoluminescence (LT‐PL) spectra of various In‐rich InAlN NCs were measured at 4 K and single peak PL emissions were observed in the wavelength region from 0.89 µm to 1.79 µm. Temperature‐dependent PL spectra of In0.92Al0.08N NCs were studied and the so‐called “S‐shape” (decrease–increase–decrease) PL peak energy shift was observed with increasing temperature. This shift indicates the carrier localization induced by the In segregation effect and is different from the anomalous blue shift frequently observed in InN films and nanowires with high residual carrier concentra‐ tions. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We demonstrate a standard‐free method to retrieve compositional information in Alx In1–xN thin films by measuring the bulk plasmon energy (Ep), employing electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM). Two series of samples were grown by magnetron sputter epitaxy (MSE) and metal organic vapor phase epitaxy (MOVPE), which together cover the full com‐ positional range 0 ≤ x ≤ 1. Complementary compositional measurements were obtained using Rutherford backscattering spectroscopy (RBS) and the lattice parameters were obtained by X‐ray diffraction (XRD). It is shown that Ep follows a linear relation with respect to composition and lattice parameter between the alloying elements from AlN to InN allowing for straightforward compositional analysis. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Band offset calculations for zinc-blende pseudomorphically strained Al1−xGaxN/Al1−yGayN and InxGa1−xN/InyGa1−yN interfaces have been performed on the basis of the model solid theory combined with ab initio calculations. From the results obtained, we have calculated, separately, the valence and conduction band discontinuities of InxGa1−xN/GaN and GaN/Al1−xGaxN as a function of the indium and gallium contents respectively. Using the latter results, we have extended our study to simulate band discontinuities for strained Ga1−xInxN/relaxed Al1−yGayN heterointerfaces. Information derived from this investigation will be useful for the design of lattice mismatched heterostructures in modeling optoelectronic devices emitting at ultraviolet to near infrared wavelengths.  相似文献   

4.
We report the fabrication and characterization of highly responsive ZnMgO‐based ultraviolet (UV) photodetectors in the metal–semiconductor–metal (MSM) configuration for solar‐blind/visible‐blind optoelectronic application. MSM devices were fabricated from wurtzite Zn1–xMgx O/ZnO (x ~ 0.44) thin‐film heterostructures grown on sapphire (α‐Al2O3) substrates and w‐Zn1–xMgx O (x ~ 0.08), grown on nearly lattice‐matched lithium gallate (LiGaO2) substrates, both by radio‐frequency plasma‐assisted molecular beam epitaxy (PAMBE). Thin film properties were studied by AFM, XRD, and optical transmission spectra, while MSM device performance was analyzed by spectral photoresponse and current–voltage techniques. Under biased conditions, α‐Al2O3 grown devices exhibit peak responsivity of ~7.6 A/W at 280 nm while LiGaO2 grown samples demonstrate peak performance of ~119.3 A/W, albeit in the UV‐A regime (~324 nm). High photoconductive gains (76, 525) and spectral rejection ratios (~103, ~104) were obtained for devices grown on α‐Al2O3 and LiGaO2, respectively. Exemplary device performance was ascribed to high material quality and in the case of lattice‐matched LiGaO2 films, decreased photocarrier trapping probability, presumably due to low‐density of dislocation defects. To the best of our knowledge, these results represent the highest performing ZnO‐based photodetectors on LiGaO2 yet fabricated, and demonstrate both the feasibility and substantial enhancement of photodetector device performance via growth on lattice‐matched substrates. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

5.
We report on a strong piezoresistive effect in GaAs/ Inx Ga1–x As/AlAs superlattice structures fabricated on a GaAs‐base cantilever. The measurements of the piezoresistive properties were performed for tensile strains by static pressure experiments. The maximum gauge factor (GF) for the GaAs/Inx Ga1–x As/AlAs epilayer can be estimated to 200, which is higher than the value of the gauge factor reported for Si transducers. Our results demonstrate a higher potential of GaAs/Inx Ga1–x As/AlAs superlattice structures for the development of piezoresistive sensors. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
From the capacitance–voltage curves and current–voltage characteristics of the In0.17Al0.83N/AlN/GaN heterostructure field-effect transistors (HFETs) with side-Ohmic contacts and normal-Ohmic contacts, two-dimensional electron gas (2DEG) electron mobility was calculated. It is found that the polarization Coulomb field scattering (PCF) is closely related to the normal-Ohmic contact processing, and the PCF was weakened by side-Ohmic contact processing in In0.17Al0.83N/AlN/GaN HFETs, similar to that in AlGaN/AlN/GaN HFET devices. Further, due to the stronger spontaneous polarization in the thinner In0.17Al0.83N barrier layer, the influence of the gate bias on the PCF in In0.17Al0.83N/AlN/GaN HFETs is greater than that in AlGaN/AlN/GaN HFETs. As a result, the PCF in In0.17Al0.83N/AlN/GaN HFETs with side-Ohmic contacts is stronger than that in AlGaN/AlN/GaN HFETs with side-Ohmic contacts. Moreover, the 2DEG electron density in the In0.17Al0.83N/AlN/GaN HFETs with side-Ohmic contacts is increased by more than twice compared with the 2DEG electron density in the In0.17Al0.83N/AlN/GaN HFETs with normal-Ohmic contacts.  相似文献   

7.
High-quality and uniform bulk layers of (Al x Ga1–x )0.5In0.5P (x=0–0.7) and AlGalnP/GainP quantum wells (QWs) are grown on 2°-off (100) GaAs substrates by low-pressure metal organic vapour phase epitaxy at a low growth rate of 0.3 nm s-1. The amount of lattice mismatch and the variation of PL peak energy of (Al0.5Ga0.5)0.5In0.5P on the 50-mm substrate are less than 6×10-4 and 2 meV, respectively. (Al0.5Ga0.5)0.5In0.5P/Ga0.5In0.5P SQWs show narrow PL spectra even from a 0.6 nm well measured at 20 K. The variation of PL peak energy from (Al0.5Ga0.5)0.5In0.5P/Ga0.5In0.5P MQWs is less than 10 meV. Also, as-cleaved AlGalnP/GalnP lasers fabricated by a three-step MOVPE show a pulsed threshold current of 82 mA at room temperature, output power of 12 mW, and the lasing wavelength at 668.2 nm.  相似文献   

8.
叶显  黄辉  任晓敏  郭经纬  黄永清  王琦  张霞 《物理学报》2011,60(3):36103-036103
利用金辅助金属有机化学气相沉淀法(MOCVD)在GaAs(111)B衬底上分别制备了InAs/GaAs和InAs/In x Ga1-xAs/GaAs(0≤x≤1)纳米线异质结构.实验结果显示,直接生长在GaAs纳米线上的InAs纳米线生长方向杂乱或者沿着GaAs纳米线侧壁向衬底方向生长,生长的含有In x Ga1-xAs组分渐变缓冲段的InAs/In x Ga1-x关键词: 纳米线异质结构 xGa1-xAs')" href="#">InxGa1-xAs 组分渐变缓冲层 金属有机化学气相沉淀法  相似文献   

9.
Separated AlxIn1−xN quantum dots (QDs) embedded in amorphous AlN films have been produced by radio-frequency co-sputtering technique on silicon (1 1 1) and quartz glass substrates. The mean size and density of AlxIn1−xN QDs can be conveniently monitored by deposition parameters. Transparent electron microscope, and X-ray diffraction were used to detect the structure of the AlxIn1−xN QDs system; field-emission scanning-electron microscope was adopted to measure the surface morphology and anticipate the size of the QDs; X-ray photoelectronic spectroscopy was used to measure the stoichiometric ratios of the QDs.  相似文献   

10.
Room temperature cathodoluminescence (RTCL) was obtained from Tm implanted AlxGa1−xN with different AlN contents (in the range 0≤x≤0.2) and from implanted InxAl1−xN with different InN contents (x=0.13 and 0.19) close to the lattice match with GaN. The Tm3+ emission spectrum depends critically on the host material. The blue emission from AlxGa1−xN:Tm peaks in intensity for an AlN content of x0.11. The emission is enhanced by up to a factor of 50 times with an increase of annealing temperature from 1000 to 1300 C. The blue emission from In0.13Al0.87N:Tm, annealed at 1200 C, is more than ten times stronger than that from AlxGa1−xN:Tm, x≤0.2. However, the intensity decreases significantly as the InN fraction increases from 0.13 to 0.19.  相似文献   

11.
Based on a pseudopotential approach under the virtual crystal approximation, the elastic modulus of InxAl1???xAsySb1???y quaternaries lattice-matched to InP, GaSb and InAs substrates has been investigated. Our findings show a reasonably good accord with experiment. The dependence of the elastic features of interest on the indium concentration x shows a monotonic behaviour when InxAl1???xAsySb1???y is lattice-matched to InP substrate. In that case, the elastic constants have larger values and the material system of interest becomes less harder and its rigidity becomes weaker. The mechanical stability criteria is verified in terms of elastic constants and shows that InxAl1???xAsySb1???y is mechanically stable for each x and substrate being considered here. The change in indium content x and the substrate is found to have no much effect on both the Poisson ratio and machinability. The present study showed that a proper choice of the indium composition x and substrate may provide more diverse opportunities as regards the elastic modulus of InxAl1???xAsySb1???y.  相似文献   

12.
Raman and Fourier transform infrared (FTIR) spectroscopies have been utilized to measure long-wavelength optical lattice vibrations of high-quality quaternary AlxInyGa1−x−yN thin films at room temperature. The AlxInyGa1−x−yN films were grown on c-plane (0 0 0 1) sapphire substrates with AlN as buffer layers using plasma assisted molecular beam epitaxy (PA-MBE) technique with aluminum (Al) mole fraction x ranging from 0.0 to 0.2 and constant indium (In) mole fraction y=0.1. Pseudo unit cell (PUC) model was applied to investigate the phonons frequency, mode number, static dielectric constant, and high frequency dielectric constant of the AlxInyGa1−x−yN mixed crystals. The theoretical results were compared with the experimental results obtained from the quaternary samples by using Raman and FTIR spectroscopies. The experimental results indicated that the AlxInyGa1−x−yN alloy had two-mode behavior, which includes A1(LO), E1(TO), and E2(H). Thus, these results are in agreement with the theoretical results of PUC model, which also revealed a two-mode behavior for the quaternary nitride. We also obtained new values of E1(TO) and E2(H) for the quaternary nitride samples that have not yet been reported in the literature.  相似文献   

13.
Polycrystalline InxGa1−xN thin films were prepared by mixed source modified activated reactive evaporation (MARE) technique. The films were deposited at room temperature on glass substrates without any buffer layer. All the films crystallize in the hexagonal wurtzite structure. The indium concentration calculated from XRD peak shift using Vegard's law was found to be varying from 2% to 92%. The band gap varies from 1.72 eV to 3.2 eV for different indium compositions. The indium rich films have higher refractive indices as compared to the gallium rich films. The near infra-red absorption decreases with gallium incorporation into InN lattice which is mainly due to decrease in the free carrier concentration in the alloy system. This fact is further supported from Hall effect measurements. MARE turns out to be a promising technique to grow InxGa1−xN films over the entire composition range at room temperature.  相似文献   

14.
First-principles density-functional theory of Full-Potential Linear Augmented Plane Wave (FP-LAPW) within local density approximation (LDA) of the optical properties of ByAlxIn1−xyN systems (with x = 0.187 and y = 0.062, 0.125 and 0.187) has been performed. Substitutional atoms of Boron induced in small amounts into the (AlxIn1−x)-cationic sublattice of AlInN affects the energy gap of BAlInN. The higher band gap of Al0.375In0.625N alloy can form a useful quantum well (QW) laser structure. A best choice of B-content, ByAlxIn1−xyN could be an alternative to AlxIn1−xN. The results of accurate calculations of the band structures and optical properties show the better performance characteristics belong to the structure containing B-content (y) of 12.5%. The NaCl metallic ByAl0.1875In0.8125−yN has a direct character for y = 12.5%. The imaginary part of dielectric function, reflectivity, refractive index, absorption coefficient and optical conductivity are investigated well and provide reasonable results for optoelectronic devices applications.  相似文献   

15.
宋杰  许福军  黄呈橙  林芳  王新强  杨志坚  沈波 《中国物理 B》2011,20(5):57305-057305
The temperature dependence of carrier transport properties of AlxGa1-xN/InyGa1-yN/GaN and AlxGa1-xN/GaN heterostructures has been investigated.It is shown that the Hall mobility in Al0.25Ga0.75N/In0.03Ga0.97N/GaN heterostructures is higher than that in Al0.25Ga0.75N/GaN heterostructures at temperatures above 500 K,even the mobility in the former is much lower than that in the latter at 300 K.More importantly,the electron sheet density in Al0.25Ga0.75N/In0.03Ga0.97N/GaN heterostructures decreases slightly,whereas the electron sheet density in Al0.25Ga0.75N/GaN heterostructures gradually increases with increasing temperature above 500 K.It is believed that an electron depletion layer is formed due to the negative polarization charges at the InyGa1-yN/GaN heterointerface induced by the compressive strain in the InyGa1-yN channel,which e-ectively suppresses the parallel conductivity originating from the thermal excitation in the underlying GaN layer at high temperatures.  相似文献   

16.
A pseudopotential formalism within the virtual crystal approximation in which the effects of composition disorder are involved is applied to the GaxIn1−xAsyP1−y quaternary alloys in conditions of lattice matching to GaAs, InP and ZnSe substrates so as to predict their energy band gaps. Very good agreement is obtained between the calculated values and the available experimental data for the alloy lattice matched to InP and GaAs. The alloy is found to be a direct-gap semiconductor for all y compositions whatever the lattice matching to the substrates of interest. The (ΓΓ) band-gap ranges and the ionicity character are found to depend considerably on the particular lattice-matched substrates suggesting therefore that, for an appropriate choice of y and the substrate, GaxIn1−xAsyP1−y could provide more diverse opportunities to obtain desired band gaps, which opens up the possibility of discovering new electronic devices with special features and properties.  相似文献   

17.
We discuss the design of uncooled lasers which minimizes the change in both threshold current and slope efficiency over the temperature range from–40 to +85°C [1]. To prevent carrier overflow under high-temperature operation, the electron confinement energy is increased by using the Al x Ga y In1–x–y As/InP material system [1] instead of the conventional Ga x In1–x As y P1–y /InP material system. Experimentally, we have investigated strained quantum well lasers with three different barrier layers and confirmed that the static and dynamical performance of the lasers with insufficient carrier confinement degrades severely under high-temperature operation [2]. With an optimized barrier layer, the Al x Ga y In1–x–y As/InP strained quantum well lasers show superior hightemperature performance, such as a small drop of 0.3 dB in slope efficiency when the heat sink temperature changes from 25 to 100°C [3], a maximum CW operation temperature of 185°C [4], a thermally-limited 3-dB bandwidth of 13.9 GHz at 85°C [2], and a mean-time-to-failure of 33 years at 100°C and 10 mW output power [5].  相似文献   

18.
The effect of interdiffusion of aluminum and indium atoms on the exciton emission energy and binding energy in InxGa1?xAs/AlyGa1?yAs quantum dots is studied. It is shown that the emission energy increases monotonically with increasing diffusion length, while the binding energy has a maximum.  相似文献   

19.
Highly strained quantum cascade laser (QCL) and quantum well infrared photodetector (QWIPs) structures based on InxGa(1−x)As−InyAl(1−y)As (x>0.8,y<0.3) layers have been grown by molecular beam epitaxy. Conditions of exact stoichiometric growth were used at a temperature of 420°C to produce structures that are suitable for both emission and detection in the 2–5 μm mid-infrared regime. High structural integrity, as assessed by double crystal X-ray diffraction, room temperature photoluminescence and electrical characteristics were observed. Strong room temperature intersubband absorption in highly tensile strained and strain-compensated In0.84Ga0.16As/AlAs/In0.52Al0.48As double barrier quantum wells grown on InP substrates is demonstrated. Γ–Γ intersubband transitions have been observed across a wide range of the mid-infrared spectrum (2–7 μm) in three structures of differing In0.84Ga0.16As well width (30, 45, and 80 Å). We demonstrate short-wavelength IR, intersubband operation in both detection and emission for application in QC and QWIP structures. By pushing the InGaAs–InAlAs system to its ultimate limit, we have obtained the highest band offsets that are theoretically possible in this system both for the Γ–Γ bands and the Γ–X bands, thereby opening up the way for both high power and high efficiency coupled with short-wavelength operation at room temperature. The versatility of this material system and technique in covering a wide range of the infrared spectrum is thus demonstrated.  相似文献   

20.
Lattice-relaxed InxAl1−xAs-graded buffer layers grown by MBE on GaAs substrate have been studied by micro-Raman scattering and photoluminescence (PL). In these heterostructures, the indium composition was gradually increased in six or four intermediate layers each of 100 nm thickness. The alloying effect in the InxAl1−xAs layers has been interpreted using the modified random element isodisplacement (MREI) formalism. The dependence in the MREI model of the longitudinal optical (LO) phonon energy and the In composition in the InAlAs alloy with PL measurements and Raman analysis allow the evaluation of disorder degree and give the In composition in the InAlAs active layers. The obtained InAs- and AlAs-like phonon frequencies from the fitting of Raman spectra are in reasonable agreement with those calculated according to the MREI model. Raman spectra show that InAs-like phonon frequencies are not strongly dependent either on the buffer structure or on the residual strain in the active layers. Using the AlAs-like LO phonon frequency shifts, we have calculated the residual strain in the InxAl1−xAs active layer. Raman results show that the slope of the grade is an important parameter that allows the growth of samples with good quality. The lower residual strain value was obtained by thick buffer with a smaller grading rate. PL measurements show that In compositions of active layers of the different studied samples are slightly higher than those measured during growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号