首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preparation of New Alkylaminofluorosilanes Aminofluorosilanes of the composition RSiF2NR′R″ (R = H, CH3, C2H3, C6H5; R′ = Si(CH3)3; R″ = C(CH3)3; R′ = R″ = i-C3H7), as well as C6H5SiF2N[C(CH3)2CH2]2CH2 are obtained by the reaction of fluorosilanes with the lithium salts of the corresponding amines in a molar ratio 1:1. The further reaction of these compounds with the lithium salts of alkylamines and anilin leads to the formation of the diaminofluorosilanes RSiFNR′R″NHR? (R? = C(CH3)3, i-C3H7, C6H5). The 1H, 19F, 29Si n.m.r. and mass spectra of the above mentioned compounds are reported.  相似文献   

2.
Abstract

Dialkylbenzylphosphine imides C6H5CH2–PRR′[dbnd]N″ (R, R′ = CH3, C2H5; R″ = H, CH3, Si(CH3)3 react with aliphatic and aromatic aldehydes in benzene solution on heating to 80°C directly and in high yields according to a Horner-Wittig-reaction with formation of an olefine whereas ketones like benzophenone and acetophenone only perform an O/NR″ exchange (R″ = H).

Dialkylbenzylphosphinimide C6H5CH2–PRR′[dbnd]N″ mit R, R′ = CH3, C2H5 und R″ = H, CH3, Si(CH3)3 reagieren mit aliphatischen und aromatischen Aldehyden in benzolischer Lösung beim Erwärmen auf 80°C direkt und mit hohen Ausbeuten im Sinne einer Horner-Wittig-Reaktion unter Olefinbildung, während sich mit Ketonen wie Benzophenon oder Acetophenon nur ein O/NR″-Austausch (R″ = H) vollzieht.  相似文献   

3.
Different Mechanisms of the Cyclisation of Aminofluorosilanes The reaction of aminofluorosilanes of the type RR′SiFNHR″ (R = H, F, CH3, C2H3, C6H5, C(CH3)3; R′ = C(CH3)3, NiC3H7Si(CH3)3, NC(CH3)3Si(CH3)3, N[Si(CH3)3]2; R″ = iC3H7, C(CH3)3, C6H5) with butyllithium depends on the steric influence of the ligands. With increasing size of the ligands the reaction takes its pathway from the substitution under LiF elimination via dimerisation with additional elimination of butan to the C? H cleavage and cyclisation via a methylen group. A further increase of the size of the substituted groups leads through the intermediate formation of a silicenium-ylid to ring closure reactions. These occure by migration of a methanid ion leading to intermolecular nucleophilic substitution. The isolated acyclic and heterocyclic compounds are described and the mass and 1H-n.m.r. spectra are reported.  相似文献   

4.
Different methods for the preparation of fluorinated iminium salts RR1CNR2R3+MF6? (R=R1=F ; R2=R3=CH3, C2H5 M=As, Sb 4a ? c R=H, R1=F; R2=R3=CH3 M=As, Sb 5a, b R=R1=CF3; R2=H, R3=CH3 M=Sb 12 R=R1=CF3; R2=R3=CH3 M=As 14) are reported, the spectroscopic properties (IR, NMR) of the cations of these salts are briefly discussed. By F?-addition to these salts, e.g. to 16, perfluoroalkyl-bis(alkyl)-amines (e.g. (CF3)2CFN(CH3)2 15) can be prepared; from the methylation of CF3NCF2 bis(trifluoromethyl) methylamine (CF3)2NCH3 (11) was obtained.  相似文献   

5.
The reaction between the platinacyclobutanes [PtX2(CH2CRR′CH2)L2] (X  Cl, Br; L  C5H5N, 4-CH3C5H4N; R, R′  H, CH3; R  H, R′  CH3, C6H5) and iodide and thiocyanate ions in methyl cyanide solution has been studied. The C3 moiety is eliminated as the cyclopropane and the process is first order with respect to the platinacyclobutanes and zero to half order with respect to the salt (MY). With the iodides the rate increases in the order Li < Na < K, Et4N, and methyl substitution in the cyclobutane ring reduces the rate of reaction with Et4NI. Added pyridine retards the reaction when L  C5H5N (X  Cl; R, R′  H) and added dimethylsulphoxide accelerates it.The mechanism suggested involves dissociation of an L ligand and attack of Y? ions and of M+Y? ion pairs on the five-coordinate intermediate formed.  相似文献   

6.
Cyclisation of New Trimethylsilylalkylaminohalosilanes Compounds of the composition RSiCl2NR′SiMe3 (R = Cl, CH3, C2H5, C6H5; R′ = CH3, C2H5, C(CH3)3) are obtained by the reaction of silicon halides with the lithium salts of silylamines. Under suitable experimental conditions the reaction leads to the formation of the corresponding Si? N four- and six-membered ring systems (RSiHalNR′)n (Hal = F, Cl; n = 2 or 3) under elimination of trimethylhalosilane. The i.r., mass, 35Cl-n.q.r., 1H and 19F-n.m.r. spectra of these compounds are reported.  相似文献   

7.
A number of carbene complexes of formulas Cl3GeMn(CO)4C(OR′)R and C5H5Mo(CO)2(GeCl3)C(OR′)CH3 (R = CH3, C6H5; R′ = CH3, C2H5) have been prepared by the reaction of [N(C2H5)4]GeCl3 with CH3Mn(CO)5, C6H5Mn(CO)5, or C5H5Mo(CO)3CH3 followed by alkylation of the resulting trichlorogermylacylcarbonylmetallate ion. The compound C5H5Mo(CO)2(GeCl3)COCH2CH2CH2 has been prepared directly by the reaction of [N(C2H5)4]GeCl3 with C5H5Mo(CO)3(CH2)3Br.  相似文献   

8.
Complexes containing tetrahalotelluracyclopenzane anions of the type (R4M2)+[C4H8TeX2X′2]2- (where R = CH3, C2H5, C3H7, C4H9, C6H13, C7H15 or C6H5; M = N, P, As or Sb; X = Cl, Br, or I and X′ = I, Cl, Br, NCO, NCS, or N3) have been synthesized, (i) by the interaction of 1-telluracyclopentane 11 diiodide with the corresponding tetraorganoammonium, -phosphonium, -arsonium, or -stibonium halides in nonaqueous solvents and (ii) via halogen exchange between complex anions and silver or alkali metal halides. The second method also yielded several pseudohalide and mixed halide-pseudohalide derivatives. The ionic nature of the new complex anions has been established by conductance and molecular weight measurements. NMR and IR spectra of some of the derivatives are discussed.  相似文献   

9.
Oxidation of the complexes trans-[M(CNR)2(dppe)2] (A) (M = Mo or W; R = Me, But or CH3C6H4-4; dppe = Ph2PCH2CH2PPh2) with diiodine or silver (I) salts gives the paramagnetic cations trans-[M(CNR)2(dppe)2]+, (M = Mo, R = CH3C6H4-4; M = W, R = But) and trans-[M(CNR)2(dppe)2]2+ (M = Mo, R = Me or CH3C6H4-4; M = W, R = Me or But). Mixtures of products are generally produced when dichlorine or dibromine are the oxidising agents, however pure salts, the seven-coordinate complex cations [MX(CNC6H4CH3-4)2(dppe)2]+ (B, X = Cl or Br) have been isolated. A simple molecular orbital scheme is proposed for complexes (A) and used to discuss their electronic spectra and their oxidation.  相似文献   

10.
Preparation, Properties, and Reaction Behaviour of 2-(Dimethylaminomethyl)phenyl- and 8-(Dimethylamino)naphthylsubstituted Lithium Hydridosilylamides – Formation of Silanimines by Elimination of Lithium Hydride The hydridosilylamines Ar(R)Si(H)–NHR′ ( 2 a : Ar = 2-Me2NCH2C6H4, R = Me, R′ = CMe3; 2 b : Ar = 2-Me2NCH2C6H4, R = Ph, R′ = CMe3; 2 c : Ar = 2-Me2NCH2C6H4, R = Me, R′ = SiMe3; 2 d : Ar = 8-Me2NC10H6, R = Me, R′ = CMe3; 2 e : Ar = 8-Me2NC10H6, R = Ph, R′ = CMe3; 2 f : Ar = 8-Me2NC10H6, R = Me, R′ = SiMe3) have been synthesized from the appropriate chlorosilanes Ar(R)SiHCl either by reaction with the stoichiometric amount of Me3CNHLi ( 2 a , 2 b , 2 d , 2 e ) or by coammonolysis in liquid NH3 with chlorotrimethylsilane in molar ratio 1 : 3 ( 2 c , 2 f ). Treatment of 2 a–2 f with n-butyllithium in equimolar ratio in n-hexane resulted in the lithiumhydridosilylamides Ar(R)Si(H)–N(Li)R′ 3 a–3 f . The frequencies of the Si–H stretching vibration and 29Si–1H coupling constants in the amides are smaller than in the analogous amines indicating a higher hydride character for the hydrogen atom of the Si–H group in the amides compared to the amines. Results of NMR spectroscopic studies point to the existence of a (Me2)N → Si coordination bond in the 8-(dimethylamino)naphthyl-substituted amines and amides. The amides 3 a–3 c are stable under refluxing in m-xylene. At the same conditions 3 d and 3 e eliminate LiH and the silanimines 8-Me2NC10H6(R)Si=NCMe3 ( 4 d : R = Me, 4 e : R = Ph) are formed. The amides 3 a–3 d und 3 f react with chlorotrimethylsilane in THF to give the corresponding N-substitution products Ar(R)Si(H)–N(SiMe3)R′ 6 a–6 d and 6 f in good yields. 4 d is formed as a byproduct in the reaction of 3 d with chlorotrimethylsilane. In n-hexane and m-xylene these amides are little reactive opposite to chlorotrimethylsilane. 6 a–6 d and 6 f are obtained in very small amounts. In the case of 3 d besides the N-substitution product 6 d the silanimine 4 d is obtained. In contrast to chlorotrimethylsilane the amides 3 a and 3 f react well with chlorodimethylsilane in m-xylene producing 2-Me2NCH2C6H4(H) SiMe–N(SiHMe2)CMe3 ( 7 a ) and 8-Me2NC10H6(H)SiMe–N(SiHMe2)SiMe3 ( 7 f ).  相似文献   

11.
Reactions of Lithium Hydridosilylamides RR′(H)Si–N(Li)R″ with Chlorotrimethylsilane in Tetrahydrofuran and Nonpolar Solvents: N‐Silylation and/or Formation of Cyclodisilazanes The lithiumhydridosilylamides RR′(H)Si–N(Li)R″ ( 2 a : R = R′ = CHMe2, R″ = SiMe3; 2 b : R = R′ = Ph, R″ = SiMe3; 2 c : R = R′ = CMe3, R″ = SiMe3; 2 d : R = R′ = R″ = CMe3; 2 e : R = Me, R′ = Si(SiMe3)3, R″ = CMe3; 2 f – 2 h : R = R′ = Me, f : R″ = 2,4,6‐Me3C6H2, g : R″ = SiH(CHMe2)2, h : R″ = SiH(CMe3)2; 2 i : R = R′ = CMe3, R″ = SiH(CMe3)2) were prepared by reaction of the corresponding hydridosilylamines RR′(H)Si–NHR″ 2 a – 2 i with n‐butyllithium in equimolar ratio in n‐hexane. The unknown amines 1 e – 1 i and amides 2 f – 2 i have been characterized spectroscopically. The wave numbers of the Si–H stretching vibrations and 29Si–1H coupling constants of the amides are less than of the analogous amines. This indicates a higher hydride character for the hydrogen atom of the Si–H group in the amide in comparison to the amines. The 29Si‐NMR chemical shifts lie in the amides at higher field than in the amines. The amides 2 a – 2 c and 2 e – 2 g react with chlorotrimethylsilane in THF to give the corresponding N‐silylation products RR′(H)Si–N(SiMe3)R″ ( 3 a – 3 c , 3 e – 3 g ) in good yields. In the reaction of 2 i with chlorotrimethylsilane in molar ratio 1 : 2,33 in THF hydrogen‐chlorine exchange takes place and after hydrolytic work up of the reaction mixture [(Me3C)2(Cl)Si]2NH ( 5 a ) is obtained. The reaction of the amides 2 a – 2 c , 2 f and 2 g with chlorotrimethylsilane in m(p)‐xylene and/or n‐hexane affords mixtures of N‐substitution products RR′(H)Si–N(SiMe3)R″ ( 3 a – 3 c , 3 f , 3 g ) and cyclodisilazanes [RR′Si–NR″]2 ( 6 a – 6 c , 6 f , 6 g ) as the main products. In case of the reaction of 2 h the cyclodisilazane 6 h was obtained only. 2 c – 2 e show a very low reactivity toward chlorotrimetyhlsilane in m‐xylene and toluene resp.. In contrast to Me3SiCl the reactivity of 2 d toward Me3SiOSO2CF3 and Me2(H)SiCl is significant higher. 2 d react with Me3SiOSO2CF3 and Me2(H)SiCl in n‐hexane under N‐silylation to give RR′(H)Si–N(SiMe3)R″ ( 3 d ) and RR′(H)Si–N(SiHMe2)R″ ( 3 d ′) resp. The crystal structures of [Me2Si–NSiMe3]2 ( I ) ( 6 f , 6 g and 6 h ) have been determined.  相似文献   

12.
The reaction of bis(trimethylsilyl)aminofluorsilanes, (Me3Si)2NSiF2R (R = CH3 or F), with sodium alcoholates or sodium phenylate yields under elimination of NaF alkoxy- and aryloxy-aminofluorosilanes of the composition (Me3Si)2NSiF(R)OR′(R′ = CH3, C2H5, C3H7, C6H5). A disiloxane is formed by thermal elimination of diethyl ether from bis(trimethylsilyl)aminomethylfluoroethoxysilane. The IR, mass, 1H and 19F NMR spectra of the above-mentioned compounds are reported. ab]Die Reaktion von Bis(trimethylsilyl)-aminofluorsilanen des Typs (Me3Si)2NSiF2R (R = F, CH3) mit Natriumalkoholaten und Natriumphenolat führt unter NaF-Abspaltung zu Alkyl- und Aryloxyaminofluorsilanen der Zusammensetzung: (Me3Si)2NSiF(R)OR′ (R′ = CH3, C2H7, C6H5, C6H5). Ein Disiloxan könnte durch die thermische Eliminierung von Diäthyläther aus Bis(trimethylsilyl)aminomethyl-fluor-äthoxy-silylarnin erhalten werden.Die IR-, Massen-, 1H- und 19F-NMR-Spektren der dargestellten Verbindungen werden mitgeteilt.  相似文献   

13.
Saturated and benzylic organomagnesium compounds are shown to readily undergo addition reactions with the conjugated enynes HC4C3CH2C1HCH2R′, with R′ = alkyl, OH, OC4H9, NHC25, N(C2H5)2, by refluxing for several hours in benzene or toluene.This reaction leads to both υ-acetylenic compounds (1,2-addition) and β-allenic compounds (1,4-addition).  相似文献   

14.
The cyclometallation of p-RC6H4CHNCH2C6H2, (R = H, Cl, NO2) by PdX2 (X = Cl, AcO) has been studied.In every case the cyclometallation occurs with formation of a five-membered ring containing the methine group. The structure of these compounds [PdX(p-RC6H3CHNCH2C6H5)]2, derived from 1H NMR spectra, are different from those reported previously. Reaction of these compounds with PEt3 gives the compounds [PdX(p-RC6H3CHNCH2C6H5)(PEt3)2] but with an excess of PPh3 only the complexes [PdX(p-RC6H3CHNCH2C6H5)(PPh3)] are formed.  相似文献   

15.
The complexes Cr(CO)5(R′SNR2) [R′ = CH3; NR2 = N(CH3)2, N(C4H8)O. R′ = C6H5; NR2 = N(CH3)2, N(C4H4)O, N(CH2? C6H5)2, N(C6H11)2] have been prepared by reaction of the sulfenamides with Cr(CO)5 · THF and characterized by analytical and spectroscopic methods. The IR, 1H-NMR, UV-VIS, and mass spectra of the complexes support the coordination of the sulfenamide via the sulfur atom. π-acceptor abilities of sulfenamides in the prepared coordination compounds, determined from IR and UV-VIS data, were compared with those of other divalent sulfur conpounds.  相似文献   

16.
X-ray analysis has been conducted on four dioxaazasilacyclooctanes R2Si(OCH2CH2)2NR′ with R = C6H5, R′ = CH3 (IV); R = C6H5, R′ = (CH3)3C (V); R = CH3, R′ = C6H5 (VI) and R = R′ = C6H5 (VII). The interatomic distances SiN measured for these compounds had the values: 2.68 (IV), 3.16 (V), 3.19 (VI) and 3.08 Å (VII), indicating weak nitrogen—silicon interaction and a virtual lack of coordinate Si ← N bonding. The data of other authors and our own evidence suggest that the Si ← N interaction in these compounds is strongly influenced by the electronic effects of Si- and N-substituents and, in particular, by the steric effects of the latter.  相似文献   

17.
The triarylmetal-centred radicals .MAr3 (M = Si, Ge, or Sn; Ar = 2,6-Me2C6H3 or 2,4,6-Me3C6H2) have been prepared from the appropriate triarylmetal chloride, MAr3Cl, and an electron-rich olefin [RNCH2CH2NRC]2 (R = Me or Et) under UV irradiation in toluene at low temperature. The triarylgermyl radicals are persistent (t12 > 24 h, 20°C) whilst the analogous tin and silicon radicals are only stable under constant irradiation at temperatures below ?20°C; the ESR spectra of the germanium radicals and of .Si(2,4,6-Me3C6H2)3 (which is the first triarylsilyl radical to be spectroscopically identified) show coincidental equivalence of all the proton couplings due to twisting of thearomatic rings into a “propeller” arrangement about the metal. The synthesis and characterisation of precursors to these radicals are also reported.  相似文献   

18.
The disproportionation reaction of diaryl ditellurides [(C6H5Te)2, (p-CH3C6H4Te)2, (p-CH3OC6H4Te)2, (p-C2H5OC4Te)2, (2-naphthyl-Te)2] with sodium hydroxide under phase transfer conditions at room temperature is described for the first time. The phase transfer catalyst used is 2HT-75, a trade name for a mixture of dialkyldimethylammonium chlorides. The intermediates aryl tellurolates react “in situ” with alkyl halides to give the corresponding alkyl aryl tellurides (ArTeR) in 52–72% yield. The following compounds were prepared: Ar  C6H5, R=CH3(CH2)3CH2, (CH3)2CHCH2CH2, (CH3)2CHCH2, CH3CHBrCH2CH2, CH3(CH2)8CH2, C6H5CH2, ClCH2, C6H5CH2CH2, CH2CHCH2, C6H5CHCHCH2, C6H5SeCH2, CH2CH2CH2CHCHCH; Ar=p-CH3C6H4, R = CH3(CH2)2CH2; Ar=p-CH3OC6H4, R = CH3(CH2)2CH2; Ar = p-CH2H5OC6H4, R= CH3(CH2)2CH2; Ar = 2-naphthyl, R = CH3(CH42)2CH2.  相似文献   

19.
Infinite dilution 29Si and 13C NMR chemical shifts were determined from concentration dependencies of the shifts in dilute chloroform and acetone solutions of para substituted O‐silylated phenols, 4‐R‐C6H4‐O‐SiR′2R″ (R = Me, MeO, H, F, Cl, NMe2, NH2, and CF3), where the silyl part included groups of different sizes: dimethylsilyl (R′ = Me, R″ = H), trimethylsilyl (R′ = R″ = Me), tert‐butyldimethylsilyl (R′ = Me, R″ = CMe3), and tert‐butyldiphenylsilyl (R′ = C6H5, R″ = CMe3). Dependencies of silicon and C‐1 carbon chemical shifts on Hammett substituent constants are discussed. It is shown that the substituent sensitivity of these chemical shifts is reduced by association with chloroform, the reduction being proportional to the solvent accessible surface of the oxygen atom in the Si‐O‐C link. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Lithioamidines &;{;R′N(Li)C(R)NR′; R = H, CH3, C6H5; R′ = C6H5, p-CH3C6H4&;}; react with anhydrous copper(II) chloride to form [Cu&;{;R′NC(R)NR′&;};2]n complexes, and with anhydrous copper(I) chloride to form [Cu&;{;R′NC(R)NR′&;};]m. The copper(II) complexes are diamagnetic, purple solids, which are air stable in the solid state but very air reactive in solution. Experimental data are consistent with a dimeric or more highly associated structure, and an X-ray structural determination shows [Cu&;{;C6H5NC(C6H5)NC6H5&;};2]2 to be dimeric with four bridging amidino-groups and a short CuCu distance (2.46Å). The copper(I) complexes are pale yellow solids, which in solution are subject to rapid aerial oxidation, especially in the presence of free amidines, and disproportionation to [Cu&;{;R′NC(R)HR′&;};2]n and copper metal. Differences in properties are noted between acetamidino-, benzamidino- and formamidino-complexes, the last complexes of copper(I) being most stable towards disproportionation. Cu&;{;C6H5NC(CH3)NC6H5&;};2 reacts with pyridine (Py) to form the copper(I) derivative Cu&;{;C6H5NC(CH3)NC6H5&;};. 2Py and with carbon disulphide to form Cu&;{;C6H5NC(CH3)NC6H5&;};2.CS2 which is reduced to form Cu&;{;C6H5NC(CH3)NC6H5&;};.CS3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号