首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of thermal treatment of polycrystalline ZnO–TiO2 systems on their luminescence emission and phase properties were investigated using ex situ cathodoluminescence and backscattering electron microscopy. The main features of the spectrum are a blue band at 2.75 eV for the phase of TiO and a complex visible band at 2.18 eV for the phase of ZnO, whose peak intensity depends on the annealing temperature. The spectrum intensity is dominated by the ZnO phase when annealing temperature was 720°C, which is attributed to abnormal grain growth. Competition is observed between the broad band peaked at 2.18 eV and visible band peaked at 2.75 eV as the annealing temperature changed (820°C‐920°C). The cathodoluminescence density is gradually governed by the TiO2 phase, and the emission in polychromatic and monochromatic imaging is stronger equally at 920°C. The nucleation of the TiO2 and ZnO grains is present in the backscattering electron images as well.  相似文献   

2.
Al‐doped zinc oxide (AZO) thin films were deposited on indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates by radio frequency (RF) magnetron sputtering method at room temperature. The effects of film thickness on the surface structure and the photoluminescence properties of the films were investigated by atomic force microscopy (AFM), secondary ion mass spectroscopy (SIMS) and room temperature photoluminescence (PL). AFM analysis showed that the surface of all films was extremely flat and uniform at nanoscale. Root mean square (RMS) value of the surface roughness which scanned the surface area of 3 µm by 3 µm and grain size increased with increasing the film thickness. Thus, the surface morphology of the films became rough because of the coarse grains. The depth profile of AZO layers was analyzed by SIMS. It was found that the thickness of the AZO layer is almost same with the desired film thickness. The PL intensity of the dominant peak decreased and shifted slightly towards the shorter wavelengths with increasing the film thickness. According to the relationships between luminescence intensity and crystalline characteristics, it was observed that the intensity of the peak decreased by the increased surface area of the grains. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Films of polyethylene terephthalate were deposited on quartz crystals and exposed to oxygen atoms to study their etching characteristics and quantify the etching rate. Oxygen (O) atoms were created by passing molecular oxygen through plasma created in a microwave discharge. The discharge power was fixed at 250 W, while the pressure of oxygen was 50 Pa. Before exposure to oxygen atoms, a thin polymer film of polyethylene terephthalate (PET) was deposited uniformly over a crystal with a diameter of 12 mm. The crystal was mounted on a quartz crystal microbalance to accurately determine the thickness of the polymer film. The polymer film was exposed to O atoms in the flowing afterglow. The density of O atoms was measured with a cobalt catalytic probe mounted next to the sample and was determined to be 1.2 × 1021 m–3. Samples were treated with O atoms for different periods of up to 120 min. The thickness of the film decreased linearly with treatment time. After 90 min of treatment, a 65‐nm‐thick polymer film was completely removed. Therefore, the etching rate was 0.5 nm/min, so the interaction probability between an O atom and an atom in the sample was extremely low, just 1.4 × 10–6. Samples treated for different periods were investigated by atomic force microscopy and X‐ray photoelectron spectroscopy to examine the etching characteristics of O atoms in the flowing afterglow. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The biofilm formation of a strain of the extremophile bacterium Acidiphilium sp., capable of donating electrons directly to electrodes, was studied by different surface characterization techniques. We develop a method that allows the simultaneous study of bacterial biofilms by means of fluorescence microscopy and atomic force microscopy (AFM), in which transparent graphitic flakes deposited on a glass substrate are used as a support for the biofilm. The majority of the cells present on the surface were viable, and the growth of the biofilms over time showed a critical increase of the extracellular polymeric substances (EPS) as well as the formation of nanosized particles inside the biofilm. Also, the presence of Fe in Acidiphilium biofilms was determined by X‐ray photoelectron spectroscopy (XPS), whereas surface‐enhanced infrared absorption spectroscopy indicated the presence of redox‐active proteins.  相似文献   

5.
The influence of Ge deposition prior to carbon interaction with 3° off‐axis Si(111) substrates on the structural and morphological properties of the formed silicon carbide (SiC) layer is studied. In situ reflection high‐energy electron diffraction (RHEED) and X‐ray diffraction (XRD) revealed the formation of the cubic silicon carbide (3C‐SiC) modification. In situ spectroscopic ellipsometry measurements revealed a decreasing 3C‐SiC thickness with increasing Ge predeposition. Atomic force microscopy (AFM) studies revealed that the surface overlayer morphology is mainly formed by periodic step arrangements whose relevant geometric parameters, i.e. lateral separation, height and terrace width, depend on the Ge content. Besides the changes of the step morphology, the surface roughness and the grain size and the strain of the formed 3C‐SiC decreases with increasing germanium precoverage. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Nanocrystalline tantalum nitride (TaN) thin films have been deposited by reactive direct current magnetron sputtering technique on Si/SiO2 (100) substrate with nitrogen flow rate ranging from 0, 3, 5, 7, 9 to 11 standard cubic centimeter per minute (sccm). Structural properties, surface morphology, chemical composition and and resistivity of the TaN films were investigated by X‐ray diffraction (XRD), field emission scanning electron microscopy, X‐ray photoemission spectroscopy (XPS) and four‐point probe measurements, respectively. In the XRD spectra, a classical formation sequence of tantalum nitride phases in the order of Ta‐Ta2N‐TaN‐Ta4N5 and decreasing amount of metallic Ta were observed with increasing nitrogen flow. The electrical resistivity of the TaN film was found to increase with increasing N/Ta ratio as a result of the increased electron scattering from interstitial N atoms. In the XPS analysis, two groups of Ta4f doublets relating to different TaN phases were observed in the core level spectra of TaN films. No strong coupling was observed between the Ta4f doublets and the Ta4p and the N1s groups. The appropriate nitrogen flow was believed to be helpful in the bonding and formation of stoichiometric TaN. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The use of plasma-polymerised fluoropolymer (CFxOy) thin films in the manufacture of microelectromechanical systems (MEMS) devices is well-established, being employed in the passivation step of the deep reactive ion etching (DRIE) process, for example. This paper presents an investigation of the effect of exposure to organic and aqueous liquid media on plasma-polymerised CFxOy thin films. Atomic force microscopy (AFM), scanning electron microscopy (SEM), ellipsometry, X-ray photoelectron spectroscopy (XPS) and dynamic wetting measurements were all employed as characterisation techniques. Highly basic aqueous solutions, including known silicon etchants, were found to cause delamination via degradation of the countersurface below the CFxOy thin film. Films were found to be stable in organic solvents, acidic aqueous solutions and slightly basic aqueous solutions.  相似文献   

8.
Aluminum oxynitride films were deposited by ion beam sputtering technique at room temperature. The optical properties and morphologies of the aluminum oxynitride films were studied and reported previously. It was found that the optical properties are closely related to the O contents in the films. In this study, the structures of the films were investigated by X‐ray diffractometer and XPS. Three oxidation states of N1s in oxynitride films, N+, N2+ and N3+, were clearly deduced from N1s spectra in the amorphous films fabricated under various oxygen partial pressures (PO2). To our knowledge, three oxidation states of N1s have not been simultaneously observed and reported in the aluminum oxynitride films previously. Corresponding bonding variations in Al2p and O1s spectra indicated more oxygen in oxynitride in the film as PO2 increases. Three aluminum oxynitride networks, AlO2N, AlO2.5N and AlO3N were deduced. Optical properties of aluminum oxynitride films resemble those of AlN and Al2O3 films when PO2 is low and high during the deposition. The refractive indices and extinction coefficients of the aluminum oxynitride films can be adjusted by using proper PO2 during the film depositions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The initial steps in the formation of thin films have been investigated by analysis of the peak shape (both inelastic background and elastic contributions) of X‐ray photoelectron spectra. Surface coverage and averaged height of the deposited particles have been estimated for several overlayers (nanometre range) after successive deposition cycles. This study has permitted the assessment of the type of nucleation and growth mechanisms of the films. The experiments have been carried out in situ in the preparation chamber of an XPS spectrometer. To check the performance of the method, several materials (i.e. cerium oxide, vanadium oxide and cadmium sulfide) have been deposited on different substrates using a variety of preparation procedures (i.e. thermal evaporation, ion beam assisted deposition and plasma enhanced chemical vapour deposition). It is shown that the first deposited nuclei of the films are usually formed by three‐dimensional particles whose heights and degree of surface coverage depend on the chemical characteristics of the growing thin film and substrate materials, as well as the deposition procedure. It is concluded that XPS peak shape analysis can be satisfactorily used as a general method to characterize morphologically the first nanometric moieties that nucleate a thin film. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Initial growth stages of the ultra thin films of germanium (Ge) prepared by ion beam sputter deposition have been studied using atomic force microscope (AFM) and interference enhanced Raman scattering. The growth of the films follows Volmer-Weber growth mechanism. Analysis of the AFM images shows that Ostwald ripening of the grains occurs as the thickness of the film increases. Raman spectra of the Ge films reveal phonon confinement along the growth direction and show that the misfit strain is relieved for film thickness greater than 4 nm. Dedicated to Professor C N R Rao on his 70th birthday  相似文献   

11.
A symmetrical 2‐thiopyrimidine based molecule with an expanded π‐electron system is synthesized and used to form a self‐assembled monolayer (SAM) on gold surfaces. Utilizing chemical vapor deposition a monolayer of (3‐mercaptopropyl)triethoxysilane is formed on silicon dioxide substrates. Both of these SAM coated substrates are characterized by X‐ray photoelectron spectroscopy and the growth of a coordination polymer built up from 5,5′‐(ethyne‐1,2‐diyl)bis(2‐hydroxyacetophenone) and copper(II) on dual SAM coated transducers is studied. After the deposition procedure on interdigital electrodes the electrical properties of the polymer are investigated performing resistive measurements. A significant change of the resistance, which depends on the surrounding atmosphere, proves the sensing behavior of the synthesized coordination polymer. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 335–344  相似文献   

12.
Unlike cation substitution, anion substitution in inorganic materials such as metal oxides and sulfides would be expected to bring about major changes in the electronic structure and properties. In order to explore this important aspect, we have carried out first‐principles DFT calculations to determine the effects of substitution of P and Cl on the properties of CdS and ZnS in hexagonal and cubic structures and show that a sub‐band of the trivalent phosphorus with strong bonding with the cation appears in the gap just above the valence band, causing a reduction in the gap and enhancement of dielectric properties. Experimentally, it has been possible to substitute P and Cl in hexagonal CdS and ZnS. The doping reduces the band gap significantly as predicted by theory. A similar decrease in the band gap is observed in N and F co‐substituted in cubic ZnS. Such anionic substitution helps to improve hydrogen evolution from CdS semiconductor structures and may give rise to other applications as well.  相似文献   

13.
CuSn thin films were deposited by the radio‐frequency (RF) magnetron co‐sputtering method on Si(100) with Cu and Sn metal targets with various RF powers. The thickness of the films was fixed at 200 ± 10 nm. The synthesized CuSn thin films mainly consisted of Cu20Sn6 and Cu39Sn11 phases, which was revealed by an X‐ray diffraction (XRD) study. The high‐resolution Cu 2p XPS and Cu LMM Auger electron spectra indicate that metallic Cu oxidized to Cu+ and Cu2+ as the RF power on Cu target increased. The atomic ratios of Sn0 and Sn4+ decreased, while that of Sn2+ increased with increasing RF power on the Cu target. The polar surface free energy (SFE) component has a different tendency in comparison with the total SFE and the dispersive SFE component. The dispersive SFE component was the dominating contributing factor to the total SFE compared with the polar SFE. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Tetraethylenepentamine, a long‐chained multifunctional amine, was used to attach nitrogen (N) groups to the surface of a polyethylene terephthalate film. The N content of the modified films was determined by X‐ray photoelectron spectroscopic analysis as well as titration measurements. The physical properties of the modified films were studied using weight‐loss measurements, X‐ray diffraction, and environmental scanning electron microscopy. Contact‐angle measurements were used to establish the changes in wettability of the modified films. The applicability of the surface‐tension‐component theory and the equation‐of‐state approach to this system is briefly discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 623–633, 2001  相似文献   

15.
3‐Aminophenylcalix[4]pyrrole (3APCP) was grafted to a glassy carbon (GC) surface during the electrochemical oxidation process in 0.1 M tetrabutylammoniumtetra‐fluoroborate (TBATFB) containing acetonitrile solution. The presence of a surface film was confirmed electrochemically by comparing voltammograms of dopamine and ferricyanide redox probes at the bare and modified electrodes. Reflection‐absorption infrared spectroscopy (RAIRS), XPS, atomic force microscopy (AFM), ellipsometry and the contact angle measurements were also employed to characterize 3APCP film on GC electrode. RAIRS analysis revealed that calix[4]pyrrole was bonded to the glassy carbon surface via the etheric linkage. The stability of the modified GC electrode was also studied. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Designing surfaces that elicit the desirable response is essential for bioMEMS (biological microelectromechanical systems) applications. To this end, we have developed two different types of silane film—hydrophobic and hydrophilic—using vinyltrichlorosilane and poly(ethylene glycol) silane, respectively. As the surface topography plays a very important role in governing protein or cell interactions, these films were characterized extensively using atomic force microscopy. All the films developed were found to have a very low root‐mean‐square roughness value (<1.3 nm). Furthermore, the topography of protein‐adsorbed silane‐modified surfaces was investigated because cell adhesion is mediated primarily by proteins. Three‐dimensional and section plots were able to differentiate the way in which protein interacts with hydrophobic and hydrophilic surfaces. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, Ta/NiFe/NiO/Ta films were prepared by magnetron sputtering. The Au layer inserted at the interface of Ta and NiFe significantly influences the exchange bias field (Hex) of the Ta/NiFe/NiO/Ta films. The Hex of the film with 0.9 nm Au layer increased by 28% compared with that of the film without a Au layer. The results show that the Au layer inserted at the interface of Ta and NiFe segregated at the surface of the NiFe/NiO in Ta/Au/NiFe/NiO/Ta films. The Au layer insulated the direct contact and suppressed the interface reaction between the NiFe and NiO layers, thus increasing the Hex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
X‐ray standing wave (XSW) field generated under Bragg reflection condition in a periodic Mo/Si multilayer structure has been used to determine the concentration and location of various trace element contaminants embedded in different layers of that multilayer structure. We have used intense synchrotron X rays for XSW analysis. It is observed that various trace element impurities such as Cr, Fe, Ni and W get embedded unintentionally in the multilayer structure during the deposition process. Consequences of such impurity incorporation on the optical properties of the multilayer structure are discussed in hard and soft X‐ray regions. Present measurements are important in order to optimize the deposition methods on one hand and to better correlate the measured optical properties of a multilayer structure with theoretical models on the other. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
20.
In this work, copper and tungsten were sputtered onto silicon wafers by direct current magnetron sputtering (DCMS) and high-power impulse magnetron sputtering (HiPIMS). The resulting films were characterized by energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), spectroscopic ellipsometry (SE), and X-ray diffraction (XRD). By EDX and XPS, all the sputtered films showed only the expected metal peaks. By XPS, the surfaces sputtered by DCMS were richer in oxygen than those produced by HiPIMS. By AFM, the surfaces were quite smooth. The root mean square (RMS) roughness values are as follows: 0.83 nm (W, HiPIMS), 1.10 nm (W, DCMS), 0.85 nm (Cu, HiPIMS), and 1.78 nm (Cu, DCMS). By SEM, the HiPIMS films exhibited smaller grain sizes, which was confirmed by XRD. The crystallite sizes estimated by XRD are as follows: 4 nm (W, body-centered cubic, HiPIMS), 13 nm (W, body-centered cubic, DCMS), 7 nm (W, cubic, HiPIMS), 14 nm (W, cubic, DCMS), 25 nm (Cu, HiPIMS), and 35 nm (Cu, DCMS). By SE, the HiPIMS surfaces showed higher refractive indices, which suggested that they were denser and less oxidized than the DCMS surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号