首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
Three 1‐phenylindolin‐2‐one derivatives, namely 1‐phenylindolin‐2‐one, C14H11NO, (I), 5‐bromo‐1‐phenylindolin‐2‐one, C14H10BrNO, (II), and 5‐iodo‐1‐phenylindolin‐2‐one, C14H10INO, (III), have been synthesized and their structures determined. Compounds (I) and (II) crystallized in the centrosymmetric space groups Pbca and P21/c, respectively, while compound (III) crystallized in the polar space group Aea2. Density functional theory (DFT) calculations show that the molecular dipole moment gradually decreases in the order (I) > (II) > (III). The relatively smaller dipole moment of (III) and the larger non‐electrostatic intermolecular interactions may be the main reasons for the noncentrosymmetric and polar structure of (III).  相似文献   

3.
A novel azocompound with two nonequivalents azo groups, 2‐(4‐phenylazoaniline)‐4‐phenylphenol, was synthesized and characterized by spectroscopic and computational analysis. An intramolecular hydrogen bonding (HB), ? O1? H1 ··· N1? , involving the ? N1?N2? group and the proton in a neighbor hydroxyl moiety, was identified. It was found responsible for a characteristic π‐conjugated H1? O1? C18?C13? N2?N1? six‐membered cyclic fragment. It is worth noting that this azo group is involved in an azo‐hydrazo equilibrium, being the azo form the most stable one. This resonance‐assisted HB was characterized using the OH‐related infrared bands and the corresponding signals in 1H NMR. In addition, conformational studies and geometrical and electronic parameter calculations were performed using the density functional theory, at B3LYP/6‐311++G** level. Bond and ring critical points were identified using the atoms in molecules theory, which allowed confirming the intramolecular HB. The second azo‐group cannot be involved in HB, but it also presents two stereoisomerics forms corresponding to cis (Z) and trans (E) configurations, with the later being the one with the lowest energy. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
The general ‘on‐solvent’ PASE approach was found to be medicinally relevant for 4H,5H‐pyrano[4,3‐b]pyran‐5‐one and 4,6‐dihydro‐5H‐pyrano[3,2‐c]pyridine‐5‐one scaffolds. Ammonium acetate‐catalyzed multicomponent reaction of aldehydes and two different C–H acids in the presence of small amounts of EtOH results in fast (3 – 15 min) and efficient formation of scaffolds, promising for many diverse oriented medical applications.  相似文献   

5.
The relative stability of 1,4‐benzodiazepin‐2‐one tautomers in the gas phase and model solvents was calculated at the M06 and ωB97XD levels of theory. The two density functionals were benchmarked earlier and demonstrated as excellent models to study tautomerism in a vast array of chemical systems. A number of commercially available 1,4‐benzodiazepin‐2‐ones were investigated computationally for the first time. In addition, some biologically active and newly devised benzodiazepines were considered, which may be important in designing structures with desired (bio)chemical features. Special attention was paid to determine substituent effects on the Gibbs free energies of keto, enol, and iminol forms for each respective benzodiazepine. It was demonstrated that (i) the replacement of the benzene ring by the heterocyclic ring in the benzodiazepine system may stabilize the iminol tautomer, and (ii) the electron‐withdrawing substituent at the C3‐position of the respective benzodiazepine may stabilize the enol tautomer relative to the parent keto form. It is concluded that substituent effects may govern the chemical reactivity and biological properties of selected benzodiazepines.  相似文献   

6.
Novel complexes of 6‐methylpyridine‐2‐carboxylic acid and 4(5)methylimidazole, namely [Mn(6‐mpa)2(4(5)MeI)2] ( 1 ), [Zn(6‐mpa)2(4(5)MeI)2] ( 2 ), [Cd(6‐mpa)2(4(5)MeI)2] ( 3 ), [Co(6‐mpa)2(4(5)MeI)2] ( 4 ), [Ni(6‐mpa)2(4(5)MeI)(OAc)] ( 5 ) and [Cu(6‐mpa)2(4(5)MeI)] ( 6 ), were synthesized for the first time. The structures of complexes 1 – 4 and complexes 5 and 6 were determined using X‐ray diffraction and mass spectrometric techniques, respectively. The experimental spectral analyses for these complexes were performed using Fourier transform infrared and UV–visible techniques. The α‐glucosidase inhibition activity values (IC50) of complexes 1 – 6 were identified in view of genistein reference compound. Moreover, the DFT/HSEh1PBE/6‐311G(d,p)/LanL2DZ level was used to obtain optimal molecular geometry and vibrational wavenumbers for complexes 1 – 6 . Electronic spectral behaviours and major contributions to the electronic transitions were investigated using TD‐DFT/HSEh1PBE/6‐311G(d,p)/LanL2DZ level with conductor‐like polarizable continuum model and SWizard program. Finally, in order to investigate interactions between the synthesized complexes ( 1 – 6 ) and target protein (template structure S. cerevisiae isomaltase), a molecular docking study was carried out.  相似文献   

7.
NiAl2O4 spinel nanocrystals were synthesized as mesoporous catalysts and were fully characterized using Fourier‐transform infrared spectroscopy (FT‐IR), X‐ray diffraction patterns (XRD), scanning electron microscopy (SEM), and Energy‐dispersive X‐ray spectroscopy (EDS). These nanocrystals catalyzed the synthesis of 2,3‐dihydroquinazolin‐4(1H)‐one derivatives via a one‐pot, three‐component condensation reaction of aromatic aldehydes, isatoic anhydride, and ammonium acetate or primary aromatic amine under microwave irradiation. By far, the most obvious advantages of the offered process are efficiency and recyclability of the catalyst as well as a significantly shorter reaction time.  相似文献   

8.
A comprehensive theoretical investigation into the mechanism of 1‐phenyl‐1‐(4‐pyridyl)ethene hydroformylation, using a rhodium catalyst employing a nonlocal density functional method (B3LYP), was carried out. The calculated results show that it is strongly exothermic by >90 kJ/mol of the whole catalytic cycle, and the rate‐limited step is H2 oxidative addition. The regioselectivity originates from olefin insertion into the Rh? H bond. The predominant product is the regiospecifically 3‐phenyl‐3‐(4‐pyridal)propanal determined both thermodynamically and kinetically. These are in agreement with practicality experimental studies. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

9.
A simple, efficient and eco‐friendly procedure has been developed using ZrOCl2·8H2O as catalyst for the synthesis of novel [1,3]oxazino[5,6‐c]quinolin‐5‐one derivatives in aqueous ethanol at room temperature. The present methodology offers several advantages such as operational simplicity, use of ZrOCl2·8H2O as a green, non‐toxic, inexpensive and reusable catalyst, reusability of reaction media, high yields, mild and environmentally benign reaction conditions.  相似文献   

10.
The time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) positive and negative ion spectra of poly(2‐vinylpyridine) (P2VP) and poly(4‐vinylpyridine) (P4VP) were analyzed using density functional theory calculations. Most of the ions from these structural isomers shared the same accurate mass, but had different relative abundance. This could be attributed to the fact that from a thermodynamics perspective, the disparity in the molecular structures can affect the ion stability if we assume that they shared the same mechanistic pathway of formation with similar reaction kinetics. The molecular structures of these ions were assigned, and their stability was evaluated based on calculations using the Kohn‐Sham density functional theory with Becke's 3‐parameter Lee‐Yang‐Parr exchange‐correlation functional and a correlation‐consistent, polarized, valence, double‐zeta basis set for cations and the same basis set with a triple‐zeta for anions. The computational results agreed with the experimental observations that the nitrogen‐containing cations such as C5H4N+ (m/z = 78), C8H7N (m/z = 117), C8H8N+ (m/z = 118), C9H8N+ (m/z = 130), C13H11N2+ (m/z = 195), C14H13N2+ (m/z = 209), C15H15N2+ (m/z = 223), and C21H22N3+ (m/z = 316) ions were more favorably formed in P2VP than in P4VP due to higher ion stability because the calculated total energies of these cations were more negative when the nitrogen was situated at the ortho position. Nevertheless, our assumption was invalid in the formation of positive ions such as C6H7N+˙ (m/z = 93) and C8H10N+ (m/z = 120). Their formation did not necessarily depend on the ion stability. Instead, the transition state chemistry and the matrix effect both played a role. In the negative ion spectra, we found that nitrogen‐containing anions such as C5H4N? (m/z = 78), C6H6N? (m/z = 92), C7H6N? (m/z = 104), C8H6N? (m/z = 116), C9H10N? (m/z = 132), C13H11N2? (m/z = 195), and C14H13N2? (m/z = 209) ions were more favorably formed in P4VP, which is in line with our computational results without exception. We speculate that whether anions would form from P2VP and P4VP is more dependent on the stability of the ions.  相似文献   

11.
A novel methodology is presented for the synthesis of 3‐substituted 2‐thioxo‐2,3‐dihydroquinazolin‐4(1H)‐one derivatives based on an efficient tandem multicomponent reaction using copper bromide as catalyst. This methodology is based on the multicomponent one‐pot reaction of methyl 2‐bromobenzoate, phenylisothiocyanate derivatives and sodium azide in the presence of copper bromide and l ‐proline under basic conditions. To show the generality of the method, various phenylisothiocyanates bearing electron‐donating or electron‐withdrawing functionalities were used and the desired products were obtained in high isolated yields.  相似文献   

12.
Single crystals of {[Cu(TO)2(H2O)2](NO3)2}n (TO: 1, 2, 4‐triazol‐5‐one) were grown by slow evaporation from aqueous solution. It crystallizes in the orthorhombic space group Pbca, with a = 7.082(1), b = 10.285(1), c = 17.911(3)Å, V = 1304.6(3)Å3, Z = 4. The CuII distorted octahedra are bridged by bidentate TO ligands into infinite 2‐D interlaced rhombic grid‐like network planes, {[Cu(TO)2(H2O)2]2+}n. Hydrogen bonds, electrostatic interactions, and weak van der Waals' forces assemble these planes and the NO3 anions to a layered structure. The title compound decomposes at 153.4 °C to the final products, Cu(CN)2 and CuO.  相似文献   

13.
Cyclodehydration of 1,4‐butanediol and 2‐butene‐1,4‐diol to the corresponding cyclic ethers was studied using the AM1 semiempirical method. It was established that the cyclodehydration reaction of 1,4‐butenediol and 2‐butene‐1,4‐diol is effected by converting of semicyclic conformers in the presence of acidic and basic active centers. The calculation results indicate that a concerted mechanism is probably realized in the cyclodehydration of both diols, while the sequences of the predicted steps in the cyclodehydration reaction for 1,4‐butanediol and 2‐butene‐1,4‐diol are different. The calculated reaction heats for 1,4‐butanediol and 2‐butene‐1,4‐diol transformations are ?184.029 and ?308.746 kcal/mol, respectively. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

14.
The molecular structure and intramolecular hydrogen bond energy of 32 conformers of 4‐methylamino‐3‐penten‐2‐one were investigated at MP2 and B3LYP levels of theory using the standard 6–31G** basis set and AIM analyses. Furthermore, calculations for all the possible conformations of 4‐methylamino‐3‐penten‐2‐one in water solution were also carried out at B3LYP/6–31G** level of theory. The calculated geometrical parameters and conformational analyses in gas phase and water solution show that the ketoamine conformers of this compound are more stable than the other conformers (i.e., enolimine and ketoimine). This stability is mainly due to the formation of a strong N? H···O intramolecular hydrogen bond, which is assisted by π‐electrons resonance. Hydrogen bond energies for all conformers of 4‐methylamino‐3‐penten‐2‐one were obtained from the related rotamers method. The nature of intramolecular hydrogen bond existing within 4‐methylamino‐3‐penten‐2‐one has been investigated by means of the Bader theory of atoms in molecules, which is based on topological properties of the electron density. The results of these calculations support the results which obtained by related rotamers method. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

15.
In this study, the direct molecular structure implementations for calculating vibrational spectra and scaling factors, and infrared intensities at both the Hartree–Fock (HF) and density functional (B3LYP) levels of theory with 6‐31G(d), 6‐311G(d), 6‐31++G(d,p), and 6‐311++G(d,p) basis sets are presented. Also, vibrational frequencies have been investigated as dependence on the choice of method and basis set. The parameters of molecular geometry and vibrational frequencies values of 2‐aryl‐1,3,4‐oxadiazoles 5a–g in the ground state have been calculated. Theoretical determination of vibrational frequencies is quite useful both in understanding the relationship between the molecular structures and scaling factor. The data of 2‐aryl‐1,3,4‐oxadiazoles 5a–g display significant electronic properties provide the basis for future design of efficient materials having the oxadiazole core and theoretical IR studies. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

16.
A new polymorph (denoted polymorph II) of 3‐acetyl‐4‐hydroxy‐2H‐chromen‐2‐one, C11H8O4, was obtained unexpectedly during an attempt to recrystallize the compound from salt–melted ice, and the structure is compared with that of the original polymorph (denoted polymorph I) [Lyssenko & Antipin (2001). Russ. Chem. Bull. 50 , 418–431]. Strong intramolecular O—H...O hydrogen bonds are observed equally in the two polymorphs [O...O = 2.4263 (13) Å in polymorph II and 2.442 (1) Å in polymorph I], with a slight delocalization of the hydroxy H atom towards the ketonic O atom in polymorph II [H...O = 1.32 (2) Å in polymorph II and 1.45 (3) Å in polymorph I]. In both crystal structures, the packing of the molecules is dominated and stabilized by weak intermolecular C—H...O hydrogen bonds. Additional π–π stacking interactions between the keto–enol hydrogen‐bonded rings stabilize polymorph I [the centres are separated by 3.28 (1) Å], while polymorph II is stabilized by interactions between α‐pyrone rings, which are parallel to one another and separated by 3.670 (5) Å.  相似文献   

17.
The possible stable forms and molecular structures of 1‐cyclohexylpiperazine (1‐chpp) and 1‐(4‐pyridyl)piperazine (1‐4pypp) molecules have been studied experimentally and theoretically using nuclear magnetic resonance(NMR) spectroscopy. 13C, 15N cross‐polarization magic‐angle spinning NMR and liquid phase1H, 13C, DEPT, COSY, HETCOR and INADEQUATE NMR spectra of 1‐chpp (C10H20N2) and 1‐4pypp (C9H13N2) have been reported. Solvent effects on nuclear magnetic shielding tensors have been investigated using CDCl3, CD3 OD, dimethylsulfoxide (DMSO)‐d6, (CD3)2CO, D2O and CD2Cl2. 1H and 13C NMR chemical shifts have been calculated for the most stable two conformers, equatorial–equatorial (e–e) and axial–equatorial (a–e) forms of 1‐chpp and 1‐4pypp using B3LYP/6‐311++G(d,p)//6‐31G(d) level of theory. Results from experimental and theoretical data showed that the molecular geometry and the mole fractions of stable conformers of both molecules are solvent dependent. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The molecular structures of 1, 8‐naphthalimide derivatives were investigated at density functional theory level within framework of PBE1PBE/6‐31G*. The vertical ionization potential and their delocalization energy of the X‐ray solid structure and gas‐phase optimized structure were explored. The configuration difference between them was attributed to the π‐π interaction of the solid effect, which has negligible effect on their absorption spectra. Solid effect also weakens the intramolecular interaction. Their absorption and luminescent spectra in gas and solvent phase were calculated by time‐dependent density functional theory (TDDFT) and conductor polarizable continuum models (CPCM)‐TDDFT approaches. Obvious red shifts from the solvent effect were found. Substituents on the imides will not improve their spectra properties a lot, whereas substituents on the naphthalene of naphthalimide would modify their properties to emit different spectra. Systematical deviation of vertical excitation energy from absorption and emission spectra, obtained by CPCM‐PBEPBE/6‐31G* and CIS‐CPCM‐PBEPBE/6‐31G* models, were about 0.05 eV and 0.02 eV compared with the experimental values. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

19.
The title molecule, 3‐{[4‐(3‐methyl‐3‐phenyl‐cyclobutyl)‐thiazol‐2‐yl]‐hydrazono}‐1,3‐dihydro‐indol‐2‐one (C22H20N4O1S1), was prepared and characterized by 1H NMR, 13C NMR, IR, UV–visible, and single‐crystal X‐ray diffraction. The compound crystallizes in the monoclinic space group P21 with a = 8.3401(5), b = 5.6976(3), c = 20.8155(14) Å, and β = 95.144(5)°. Molecular geometry from X‐ray experiment and vibrational frequencies of the title compound in the ground state has been calculated using the Hartree–Fock with 6‐31G(d, p) and density functional method (B3LYP) with 6‐31G(d, p) and 6‐311G(d, p) basis sets, and compared with the experimental data. The calculated results show that optimized geometries can well reproduce the crystal structural parameters, and the theoretical vibrational frequencies values show good agreement with experimental data. Density functional theory calculations of the title compound and thermodynamic properties were performed at B3LYP/6‐31G(d, p) level of theory. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

20.
This article reports the results of the theoretical investigation of adsorption of 2,4,6‐trinitrotoluene (TNT) on Al‐hydroxylated (0001) surface of (4 × 4) α‐alumina (α‐Al2O3) using plane‐wave Density Functional Theory. Sixteen water molecules were used to hydroxylate the alumina surface. The Perdew–Burke–Ernzerhof functional and the recently developed van der Waals functional (vdW‐DF2) were used. The interaction of electron with core was accounted using the Vanderbilt ultrasoft pseudopotentials. It was found that hydroxylation has significant influence on the geometry of alumina and such changes are prominent up to few layers from the surface. Particularly, due to the Al‐hydroxylation the oxygen layers are decomposed into sublayers and such partitioning becomes progressively weaker for interior layers. Moreover, the nature of TNT adsorption interaction is changed from covalent type on the pristine alumina surface to hydrogen‐bonding interaction on the Al‐hydroxylated alumina surface. TNT in parallel orientation forms several hydrogen bonds compared to that in the perpendicular orientation with hydroxyl groups of the Al‐hydroxylated alumina surface. Therefore, the parallel orientation will be present in the adsorption of TNT on Al‐hydroxylated (0001) surface of α‐alumina. Further, the vdW‐DF2 van der Waals functional was found to be most suitable and should be used for such surface adsorption investigation. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号