首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Based on the ground‐based simulation facility, the effects of atomic oxygen (AO) irradiation on the structural and tribological properties of pure polytetrafluoroethylene (PTFE) and carbon fiber and MoS2‐filled PTFE composites were studied by scanning electron microscopy, X‐ray photoelectron spectroscopy, and a ball‐on‐disc tribometer. The results shown that AO irradiation had significant effects on the structural and tribological properties of pure PTFE, in which the surface morphologies, mass loss, friction coefficient, and wear rate had been changed greatly after AO irradiation. However, it was noticeable that the addition of carbon fiber and MoS2 filler to PTFE could improve the AO resist capacity and tribological properties of PTFE composites significantly. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
To understand the effects of atomic oxygen (AO) irradiation on the structural and tribological behaviors of polymer composites, polyimide/Al2O3 composites were irradiated with AO in a ground‐based simulation facility. The structural changes were characterized by X‐ray photoelectron spectroscopy and attenuated total‐reflection FTIR, whereas the tribological changes were evaluated by friction and wear tests as well as scanning electron microscopy analysis of the worn surfaces. It was found that AO irradiation induced the oxidation and degradation of polyimide molecular chains, which increased the O concentration and decreased the C concentration in the composite surfaces. The destruction action of AO changed the surface chemical structure and morphology of the samples. Friction and wear tests indicated that AO irradiation decreased the friction coefficient but increased the wear rate of both pure and Al2O3 filled polyimides. In terms of the tribological properties, appropriate content of Al2O3 might be favorable for the improvement of tribological properties in AO environment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
《先进技术聚合物》2018,29(5):1487-1496
High‐performance polymer‐based frictional materials have become increasingly important to improve the mechanical output properties of ultrasonic motors. This study discussed the friction and wear behavior of 2 dominating frictional materials of polymer composites for ultrasonic motors, polyimide (PI), and polytetrafluoroethylene (PTFE) filled by aramid fibers (AF) and molybdenum disulfide (MoS2). To explore the wear mechanisms, the tribo‐pair contact stress was theoretically characterized, and the interface temperature rise was numerically predicted. The predictions showed that the flash temperature on asperity tips could reach the glass transition temperature of the polymer materials. The experimental results indicated that the contact stress and sliding speed have a small effect on the friction of the PI composite but influence considerably the friction of the PTFE composite. A higher contact stress brings about a higher specific wear rate, but a higher sliding speed reduces the wear rate. Compared with AF/MoS2/PTFE, the AF/MoS2/PI has much better tribological performance under high loads and speeds.  相似文献   

4.
An orthogonal test was used to design different mixture ratios of molybdenum disulfide(MoS2), graphite, and SiO2 particles, which were filled with polytetrafluoroethylene (PTFE) composite. MoS2-, graphite-, and SiO2-modified PTFE was obtained by pressing and sintering, and the processing parameters were determined using progressive studies and experiments. The friction and wear properties of different PTFE composites lubricated with natural seawater were analyzed using an MMU-5G wear tester. A laser scanning confocal microscope was employed to examine the morphological characteristics of the worn surface. Moreover, the influence of particle proportions on the tribological property of composites was analyzed. Results show that the addition of SiO2, MoS2, and graphite can increase the bearing capacity, improve the wear resistance, reduce the friction coefficient, and increase the self-lubricating ability of the PTFE matrix.  相似文献   

5.
刘百幸 《高分子科学》2016,34(12):1448-1455
Polytetrafluoroethylene (PTFE) was irradiated with protons in a ground-based simulation facility to study the effects of proton irradiation on the structural and tribological properties of PTFE. The structural changes were characterized by X-ray photoelectron spectroscopy (XPS) and attenuated total-reflection FTIR (ATR-FTIR), while the tribological properties were evaluated by friction and wear tests. It was found that proton irradiation induced the degradation of PTFE molecular chains, resulting in the increase of C concentration and the decrease in F concentration on the sample surfaces, and the surface chemical structure and morphology of the samples changed, which affected the friction coefficient and decreased the wear rate of the specimens as the friction and wear tests revealed.  相似文献   

6.
MoS2/a-C:H multilayer film and MoS2/a-C:H composite film exhibit excellent tribological properties in vacuum, which can be used as the potential space lubricant. The radiation-protective properties of these two films in atomic oxygen (AO) are evaluated. The influences of AO radiation on structure, morphology, and tribological properties of the films were investigated. The results show that AO radiation mainly causes oxidation and increases sp2 C content in both of the films. Furthermore, the MoS2 sublayer on the surface of the multilayer film is oxidized heavily, whereas both the MoS2 and the a-C:H matrix on the surface were oxidized in the composite film. As a result of this, the multilayer film exhibits high friction coefficient and short sliding lifetime in vacuum after AO radiation. Compared with that, the composite film exhibits lower friction and longer sliding time more than 3600 seconds in vacuum, which illustrates it has a good AO radiation protection. This indicates that MoS2/a-C:H composite film is more likely to be used as a potential space lubricant.  相似文献   

7.
In a previous work, the roles of low‐loading, that is, 1 vol %, nano‐SiO2 particles on the tribological behavior of short carbon fibers (SCFs)/polytetrafluoroethylene (PTFE)/graphite filled polyetheretherketone (PEEK) were studied. In the present work, the effects of nanoparticle content, varying from 1 to 4 vol %, on the structure and the tribological performance of the composite was investigated. The polished cross sections of the composites were inspected using a scanning electron microscope (SEM). The incorporated nanoparticles significantly reduce the friction coefficients of the composite. With low pressure‐sliding velocity (pv) factors, nanoparticle agglomerates seem to exert an abrasive effect on SCF, and thereby lead to high wear rates. Under such conditions, an increase in nanoparticle content decreases the wear resistance. With high pv factors, the nanoparticles remarkably improve the wear resistance of the composite and the nanoparticle contents do not play an important role on the wear resistance. The worn surfaces, transfer films and wear debris of the composites were analyzed. The tribological mechanisms were discussed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 801–811, 2010  相似文献   

8.
Ti/MoS2/Si/MoS2 multilayer coating was fabricated by a pulse laser deposition method from a titanium, molybdenum disulphide, and silicon targets, and the coating was deposited in layers on aluminium-silicon substrates, at room temperature. The structural analysis and surface morphology of multilayer Ti/MoS2/Si/MoS2 coating were analysed using X-ray diffraction, Raman spectroscopy, and scanning electron microscopy integrated with energy dispersive X-ray spectroscopy. Nanomechanical tests were performed on Ti/MoS2/Si/MoS2 coating at small loads of 2000 to 6000 μN to study the effect of load on hardness and Young's modulus. Nanoscratch and nanowear tests were conducted on Ti/MoS2/Si/MoS2 coating at a low load of 1000 to 5000 μN and 100 to 500 μN, respectively, to study deformation and failure behaviours of coating/substrate system and also their nanotribological properties. The results show that hardness and Young's modulus of Ti/MoS2/Si/MoS2 coating decrease with increase in load. A low friction coefficient of 0.09 to 0.16 was observed, which proves that the Ti/MoS2/Si/MoS2 coating possesses self-lubricating property. The wear rate of Ti/MoS2/Si/MoS2 coating increases 3.3 × 10−10 to 7.8 × 10−10 mm3/Nm with increase in load. Ti/MoS2/Si/MoS2 multilayer coating shows a smooth wear track with no cracks and debris on the surface, which attributed plastic flow of softer coating material around the wear track.  相似文献   

9.
The effect of air oxidation and ozone surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil‐lubricated condition was investigated. Experimental results revealed that ozone treated CF reinforced PTFE (CF–PTFE) composite had the lowest friction coefficient and wear under various applied loads and sliding speeds compared with untreated and air‐oxidated composites. X‐ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that, after ozone treatment, oxygen concentration was obviously increased, and the amount of oxygen‐containing groups on CF surfaces was largely increased. The increase in the amount of oxygen‐containing groups enhanced interfacial adhesion between CF and PTFE matrix. With strong interfacial adhesion of the composite, stress could be effectively transmitted to carbon fibers; carbon fibers were strongly bonded with PTFE matrix and large scale rubbing‐off of PTFE was prevented, therefore, the tribological properties of the composite were improved. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
One‐layer and two‐layer nano‐TiO2 thin films were prepared on the surface of common glass by sol–gel processing. Water contact angle, surface morphology, tribological properties of the films before and after ultraviolet (UV) irradiation were investigated using DSA100 drop shape analyzer, scanning probe microscopy (SPM), SEM and universal micro‐materials tester (second generation) (UMT‐2MT) friction and wear tester, respectively. The stored films markedly resumed their hydrophilicity after UV irradiation. But UV irradiation worsened tribological properties of the films. After the film was irradiated by UV, the friction coefficient between the film and GCr15 steel ball increased about 10–50% and its wear life shortened about 20–90%. Abrasive wear, brittle break and adherence wear are the failure mechanisms of nano‐TiO2 thin films. It was believed that UV irradiation increased surface energy of the film and then aggravated adherence wear of the film at initial stage of friction process leading to severe brittle fracture and abrasive wear. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Surface treatment (ST) of carbon fibers (CF) leads to an enhancement in fiber‐matrix adhesion. However, it deteriorates the strength of a fiber which makes its reinforcing action less effective in a composite. These effects in opposite directions control the net strength of a composite, and hence, the treatment has to be judiciously applied, which would enhance the first factor and minimize the second one. Authors have recently reported on four effective techniques (using various doses) such as treatments with nanoparticles of Ytterbium fluoride (YbF3), cold remote nitrogen–oxygen plasma (CRNOP), γ‐ray irradiation and nitric acid oxidation. Amongst these methods, nitric acid oxidation is studied in depth in the literature, and γ‐ray irradiation is sparingly studied. However, nano‐YbF3 and CRNOP were first time reported in the literature by the authors. However, comparative aspects of all these methods were not addressed. In this paper, these aspects in details are discussed to lay down the right criteria for selection of a ST technique of CF to design the desired performance of a composite. The composites with polyetherimide and treated CF (including untreated) were developed and evaluated for various properties including tribological one. Treated CF based composites exhibited excellent mechanical and tribological properties (under harsh operative conditions with wear rates ≈ 1 × 10?15 m3/Nm and μ ≈ 0.09). It was concluded that for strength and tribo‐performance, different treatments and doses are to be employed. Overall nanosized‐YbF3 treatment of CF proved to be the most promising ST method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
《先进技术聚合物》2018,29(10):2674-2682
Solution styrene butadiene and butadiene rubber (SSBR‐BR) composites reinforced with different contents of SiO2‐graphene have been fabricated firstly. The mechanical properties of the rubber composites were comparatively investigated using tensile tests; experimental results showed that, as an overall trend, the tensile and tear strength increased with increasing contents of SiO2‐graphene. Most importantly, under the condition of simulating practical working condition, the tribological behavior of SSBR‐BR composites with different contents of SiO2‐graphene was explored via a universal ring‐plate frictional tester in detail. Combined with the surface roughness of the counterparts, the wear mechanisms were discussed for SSBR‐BR composites under the cement and asphalt counterparts. Finally, several wear mechanisms under different actual working conditions were proposed.  相似文献   

13.
A novel method was developed to fabricate continuous glass fiber reinforced polytetrafluoroethylene (PTFE/GF) composites which includes the use of conventional sintering and vacuum assisted resin transfer molding (VARTM), successively. The RTM resin (coded as M4506‐1) “fills” the porosity and defects of original PTFE/GF composites prepared by traditional sintering processing, improves the overall interface bonding between the matrix and fibers, and thus significantly improves the mechanical properties such as the flexural and interlaminar shear strength of fiber reinforced PTFE composites. The present work suggests a new way to produce fiber (especially continuous fiber) reinforced PTFE composites with high mechanical properties, and thus make it potentially possible to use PTFE‐based composites as structural materials. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The morphology and tribological properties of Langmuir–Blodgett mono- and bilayers of stearic acid with particles of molybdenum disulfide (MoS2) and amorphous carbon (С), prepared on silicon and steel substrates by horizontal deposition (stearic acid–MoS2 and stearic acid–С monolayers) and by the “roll” technique (stearic acid–MoS2/stearic acid–С bilayers), were studied. Incorporation of C and MoS2 particles into the structure of a stearic acid film enhances its wear resistance by a factor of 2.8 and 5.5, respectively. The presence of MoS2 and С particles and of their aggregates of size from ~220 nm to 16.3 μm in stearic acid layers was confirmed by atomic force microscopy.  相似文献   

15.
将钼粉与升华硫和硒粉的混合粉末按一定化学计量比混合,通过固相反应法成功制备出了均匀的片状纳米颗粒。分别使用X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)以及透射电子显微镜(TEM)对该纳米粉体进行结构表征和分析,发现该粉体为MoS2/MoS1.5Se0.5混合晶相,晶粒尺寸在300~600 nm,厚度约为5 nm的片状结构。将该MoS2/MoS1.5Se0.5纳米片作为润滑油添加剂添加到基础油中,使用UMT-2型摩擦磨损试验机对其摩擦学性能进行测试,并对摩擦机理进行了解释,结果表明MoS2/MoS1.5Se0.5纳米片作为润滑油添加剂具有良好的减摩抗磨性能。  相似文献   

16.
《先进技术聚合物》2018,29(2):896-905
The tribological characteristics of PEEK composites fretting against GCr 15 steel were investigated by a SRV‐IV oscillating reciprocating ball‐on‐disk tribometer. In order to clarify the effect of type and size of fillers on the properties of PEEK composites, nano‐sized and micro‐sized CF and PTFE fillers were added to the PEEK matrix. The thermal conductivity, hardness, and fretting wear properties of PEEK composites reinforced by CF or PTFE were comparatively studied. The results showed that the type and size of the fillers have an important effect on both the friction coefficient and wear rate, by affecting their thermal conductivity, hardness, as well as the surface areas of their transfer films. In comparison, the effect on improving the tribological properties of micro‐sized CF was superior to that of nano‐sized CF, while the effect of nano‐sized PTFE was superior to that of micro‐sized PTFE. Considering the acceptable friction coefficient and wear rate of the composite under the fretting wear test, it seemed that 4% nCF, 20% mCF, 2% nPTFE and 10% mPTFE were desired additive proportions. And it also can be found that during the fretting wear test, the abrasive and adhesive wear resulted in accumulative debris at the contacting surface. The transfer films made of debris were formed on the counterfaces.  相似文献   

17.
Mechanical properties and tribological behavior of epoxy resin (EP) and EP nanocomposites containing different shape nanofillers, such as spherical silica (SiO2), layered organo‐modified montmorillonite (oMMT) and oMMT‐SiO2 composites, were investigated. The SiO2‐oMMT composites were prepared by in situ deposition method and coupling agent modification, and transmission electron microscopy (TEM) analysis shows that spherical SiO2 is self‐assembled on the surface of oMMT, which forms a novel layered‐spherical nanostructure. The mechanical properties test results show that oMMT obviously improves the strength of EP and SiO2 enhances its toughness, but oMMT‐SiO2 exhibits a synergistic effect on toughening and reinforcing EP simultaneously. A pin‐on‐disc rig was used to test friction and wear loss of pure EP and EP nanocomposites. The tribological test results prove that these nanofillers with different shapes play different roles for improving the wear resistance of EP nanocomposites. Morphologies of the worn surfaces were studied further by scanning electron microscopy (SEM) observations, and it was clarified that the EP and EP nanocomposites undergo similar wear mechanisms. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Swift heavy ion (SHI) irradiation technology is known to enhance the optical, electronic, mechanical, and electrical properties in polymer nanocomposites by the virtue of electron-phonon coupling. In the present work, Molybdenum disulphide (MoS2), a two-dimensional metal dichalcogenide, has been exfoliated via liquid-phase exfoliation using N-methyl-2- pyrrolidone (NMP) as the solvent that yielded nanosheets of around 2–4 layers as depicted by HR-TEM images. MoS2 - PVA free-standing films were prepared by wet chemical technique i.e. solution casting method and irradiated by focussed high-energy Ag9+ ion beam at fluence range of 1E10 - 3E11 ions/cm2. As a consequence, the structural modification was observed by X-Ray diffraction studies that showed the shift of (002) plane of MoS2 while Raman studies indicated the decrease of degree of disorderness at fluence 1E10 ions/cm2. SHI irradiation has found to induce a two-order increase in the electrical conductivity yielding a 9.7 E-3 S/cm against that of the pristine films at 2.6E-5 S/cm. The enhanced conductivity is attributed to the induced dispersion and annealing of MoS2 nanosheets in the PVA matrix due to the interaction of 120 MeV Ag9+ ion beam irradiation as explained by Thermal spike model.  相似文献   

19.
In this work, dense molybdenum disulfide (MoS2) nanosheets were grown onto polydopamine (PDA) functionalized aramid fabric (AF) surface via a simple hydrothermal method to improve the wettability between AF surface and polyhexahydrotriazine (PHT) resin, thus resulting in stronger AF/resin interfacial bonding. The PDA-assisted surface modification on AF generated a high active interface allowing the nucleation and subsequent growth of MoS2. Moreover, this nanosheet-coated reinforcement fiber enabled the viscous liquid of resin precursor to spread over and form intimate contact with its surface, which eventually promoted the formation of strong interfacial bonding between AF-MoS2 and cured resin matrix. In addition, the enhanced interfacial bonding between the reinforcement and matrix generated stable mechanical interlock within the resulting AF-MoS2/PHT composites, and thus, contributed better thermal stability, higher tensile strength, and tribological properties. Compared with AF/PHT composites, the tensile strength and elongation at break of the AF-MoS2/PHT composites increased by 32.5% and 50%, and the average friction coefficient and wear rate of AF-MoS2/PHT composites decreased by 43.9% and 86.3%, respectively. Furthermore, the composites realized the non-destructive recovery of expensive AF at 25 °C. Overall, our study demonstrates a dependable strategy to construct the recyclable AF-MoS2/PHT composites, which exhibit valuable applications in tribology.  相似文献   

20.
The tribological properties and wear resistance under different action of composite materials based on of ultra-high-molecular-weight polyethylene (UHMWPE) and fillers of various types such as organomodified montmorillonite (MMT), graphite nanoplates (GNP), molybdenum disulfide, and shungite prepared via polymerization in situ are studied. According to the obtained results, the introduction of these fillers to UHMWPE in the amount of 0.4–7 wt % has almost no effect on the value of the coefficient of sliding friction on steel in the mode of dry friction. Composites with GNP, MoS2, and shungite are characterized by a significant (two- to threefold) increase in the wear resistance in the case of sliding friction on steel. The abrasive wear of composites in the case of friction on an abrasive paper is substantially affected by the type of filler, the use of MMT was the most effective for increasing the wear resistance of composites. In the case of a highspeed impact effect of water–sand suspensions all the studied composites are characterized by increased wear resistance in comparison with industrial UHMWPE at a low concentration of fillers and by an increase in the wear with the increase of the filler content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号