首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
X‐ray photoelectron spectroscopy was used to investigate thermal stability of HfO2 on SiO2/Si substrate prepared by atomic layer deposition, followed by annealing at different temperature. Hf silicate and Hf silicide are formed at the interface of HfO2 and SiO2 during deposition. The Hf silicide disappears, while the amount of the Hf silicate is intensified after post‐deposition annealing treatment at 400 °C. Phase separation of the Hf silicate layer occurs when the annealing temperature is over 400 °C, resulting in the Hf silicate decomposition into Si and Hf oxides. Moreover, crystallization at high temperature leads to grain boundaries formation, which deteriorates the gate leakage current, as observed by the electrical measurements. The similar annealing temperature dependence of both internal electric field and the amount of Hf silicate implies that the Hf silicate plays a key role in building up the internal electric field, which is attributed to generation of oxygen vacancies (Vo) in the Hf silicate layer. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Many refractory metal silicides have received great attention due to their potential for innovative developments in the silicon‐based microelectronic industry. However, tantalum silicide, Ta2Si, has remained practically unnoticed since its successful application in silicon carbide technology as a simple route for a high‐k dielectric formation. The thermal oxidation of Ta2Si produces high‐k dielectric layers, (O? Ta2Si)‐based on a combination of Ta2O5 and SiO2. In this work, we investigate the interfacial properties of thermally oxidized (850–1050 °C) Ta2Si on commercial silicon substrates. The implications of diffusion processes in the dielectric properties of an oxidized layer are analyzed. In particular, we observe migration of tantalum pentoxide nanocrystals into the substrate with increasing oxidation temperature. An estimation of the insulator charge and interfacial O? Ta2Si/Si trap density is also presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Synthesis and Crystal Structure of U2Ta6O19, a New Compound with “Jahnberg‐Structure” and a Note to the First Oxide Chlorides in the Systems Th/Nb/O/Cl and Th/Zr(Hf)/Nb/O/Cl Black crystals of U2Ta6O19 with hexagonal shape were obtained (at T1) by chemical transport using HCl (p (HCl, 298 K) = 1 atm; silica tube) as transport agent in a temperature gradient (T2 → T1; 1000 °C → 950 °C) and using a mixture of UO2, Ta2O5, and HfO2 (or ZrO2) (1 : 2 : 2) as starting materials (at T2). For the structure determination the best result was achieved in space group P63/mcm (No. 193, a = 6.26(2) Å, c = 19.86(6) Å). U2Ta6O19 is isotypical to Th2Ta6O19. In the crystal structure each uranium atom is surrounded by oxygen atoms like a bi‐capped trigonal antiprism and tantalum atoms like a pentagonal bipyramid (CN = 7). Like the “Jahnberg Structures” both coordination polyhedra arrange themselves in separate layers (U–O‐polyhedra, in o‐, Ta–O‐polyhedra in p‐layers) so that in the direction of the c‐axis the sequence of layers is p‐p‐o. Using chemical transport it was possible to prepare the compounds Th12Nb16O63Cl2 and Th8M4Nb16O63Cl2 (M = Zr, Hf), which are the first quaternary and quinquinary examples in these systems. They crystallize isotypically.  相似文献   

4.
The Metal‐rich Layer Structure of Ta6STe3 Ta6S1+xTe3–x was prepared from an appropriate mixture of 2 H–Ta1.3S2, TaTe2, and Ta in a fused tantalum tube at 1273 K within 3 d. The results of a X‐ray single crystal structure analysis for a phase near the Te‐rich limit of the homogeneity range are reported. Ta6S1.00Te3.00(1) crystallizes in the triclinic space group P1, a = 993.14(8) pm, b = 1032.18(8) pm, c = 1378.78(11) pm, α = 79.32(1)°, β = 81.36(1)°, γ = 85.74(1)°, Z = 6, Pearson symbol aP60, 6048 Io > 2σ (Io), 286 variables, wR2 = 0.067. The metal‐rich layer structure of Ta6STe3 comprises distorted icosahedral Ta13 clusters and related deltahedral cluster fragments complemented by chalcogen atoms. The centred clusters consist of 11, 12, 13, 14, or 16 atoms. They interpenetrate into lamellae in which the tantalum and chalcogen atoms are spatially segregated according to [Q–Ta3–Q]. The signature of the structure is a lenticular heptagonal antiprismatic Ta30 cluster which seems to be excised from the pentagonal antiprismatic columnar structure of Ta6S. The Ta30 clusters and distorted icosahedral Ta13 clusters are connected and fused into puckered layers. The rest of the tantalum valences are used for heteronuclear bonding. The chalcogen atoms having three to six next tantalum atoms coat the corrugated, tetrahedrally close‐packed layers. Ta6STe3 is a moderate metallic conductor (ρ293 K = 3 × 10–4 Ωcm) exhibiting typical temperature independent paramagnetic properties.  相似文献   

5.
Direct reaction of stoichiometric amounts of KBr, tantalum and bromine at 720 °C, followed by extraction and crystallization gives Ta6Br14 · 7H2O (1) . This compound slowly aquates into [(Ta6Br12)(H2O)6]2+, which crystallized as mixed Cs+/Br ( 2 ), Cl ( 3 ) and SO42– ( 4 ) salts. In Bu4NBr melt, 1 undergoes oxidation into (Bu4N)2[(Ta6Br12)Br6] ( 5 ). Reaction of 1 with dimethylsulfoxide also induces oxidation of the { Ta6Br12} 2+ core into { Ta6Br12} 4+, and the corresponding complex [(Ta6Br12)(dmso)2Cl4] · iPrOH · 4.8H2O ( 6 ) was isolated and structurally characterized. Molecular and crystal structures for 2 – 6 were determined.  相似文献   

6.
Summary We prepared thin films of tantalum oxide on SiO2/Si substrates by thermal oxidation of tantalum. The different oxide layers and their interfaces were characterized by SIMS, AES, and XPS. Characteristic structures were obtained after different oxidation procedures. The comparative discussion of AES and SIMS depth profiles makes possible an unequivocal characterization of the reactive interfaces between the oxides of Ta and Si. The Ta2O5/SiO2 interface in particular shows non-stoichiometries which depend on the oxidation procedures and which determine the performance characteristics of pH-sensitive Ta2O5 field-effect transistors.
Tiefenprofile von Ta2O3/SiO2/Si-Strukturen: Eine kombinierte Untersuchung mit Röntgen-Photoemissions-, Auger-Elektronen- und Sekundär-Ionen-Massen-Spektrometrie
  相似文献   

7.
X‐ray photoelectron spectroscopy (XPS) measurements of a Pt/HfO2(SiO2)/Si metal‐oxide‐semiconductor (MOS) structure under a bias voltage applied between the gate metal and the silicon substrate were studied. The binding energy shifts of Pt 4f, Hf 4f, O 1s and Si 2p according to the applied voltage were investigated using the MOS structure. After the influence of measurements on the results was carefully examined under various conditions, the amount of the shifts was analyzed from a viewpoint of band alignment. Based on the experimental results, a new way of interpreting the deviation of the electric properties from the ideal ones in a band diagram was proposed. It was demonstrated that the biased XPS is a very powerful method to understand the origin of the electric properties of MOS. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The diffusion of Pb through Pb(Zr0.2Ti0.8)O3(PZT)/Pt/Ti/SiO2/Si thin film heterostructures is studied by using time‐of‐flight secondary ion mass spectrometry depth profiling. The as‐deposited films initially contained 10 mol% Pb excess and were thermally processed at temperatures ranging from 325 to 700°C to promote Pb diffusion. The time‐of‐flight secondary ion mass spectrometry depth profiles show that increasing processing temperature promoted Pb diffusion from the PZT top film into the buried heterostructure layers. After processing at low temperatures (eg, 325°C), Pb+ counts were low in the Pt region. After processing at elevated temperatures (eg, 700°C), significant Pb+ counts were seen throughout the Pt layer and into the Ti and SiO2 layers. Intermediate processing temperatures (400, 475, and 500°C) resulted in Pb+ profiles consistent with this overall trend. Films processed at 400°C show a sharp peak in PtPb+ intensity at the PZT/Pt interface, consistent with prior reports of a Pt3Pb phase at this interface after processing at similar temperatures.  相似文献   

9.
Synthesis, Structure, and Properties of the Tantalum‐rich Silicide Chalcogenides Ta15Si2QxTe10–x (Q = S, Se) The quaternary tantalum silicide chalcogenides Ta15Si2QxTe10–x (Q = S, Se) are accessible from proper, compacted mixtures of the respective dichalcogenides, silicon and elemental tantalum at 1770 K in sealed molybdenum tubes. The structures were determined from the strongest X‐ray intensities of fibrous crystals with cross sections of about 3 μm and confirmed by fitting the profile of single phase X‐ray diffractograms. The phases Ta15Si2S3.5Te6.5 and Ta15Si2Se3.5Te6.5 crystallize in the monoclinic space group C2/m with two formula units per unit cell, a = 2393.7(1) pm, b = 350.08(2) pm, c = 1601.2(1) pm, β = 124.700(4)°, and a = 2461.3(2) pm, b = 351.70(2) pm, c = 1601.7(1) pm, β = 124.363(5)°, respectively. Tri‐capped trigonal prismatic Ta9Si clusters stabilized by encapsulated Si atoms can be seen as the characteristic unit of the structure. The clusters are fused into twin columns which are connected by additional Ta atoms, thus forming corrugated layers. The remaining valences at the surfaces of the layered Ta–Si substructure are saturated by those of chalcogen atoms which are coordinated only from one side by three, four or five Ta atoms. Few bridging covalent Ta–S–Ta and Ta–Se–Ta bonds and, otherwise, dispersive interactions between the Q atoms hold these nearly one nanometer wide slabs together. The phases are moderate metallic conductors. There is no evidence for any electronic instability within 10–310 K in spite of the high anisotropy of the structures.  相似文献   

10.
We have made calculations of N 1s, O 1s, Si(oxide) 2p, Hf 4f, and Si(substrate) 2p photoelectron intensities at selected emission angles for films of SiO1.6N0.4 and HfO1.9N0.1 of various thicknesses on silicon. These calculations were made with the National Institute of Standards and Technology (NIST) Database for Simulation of Electron Spectra for Surface Analysis (SESSA) to investigate effects of elastic scattering and analyzer‐acceptance angle that could be relevant in the analysis of angle‐resolved X‐ray photoelectron spectroscopy (ARXPS) experiments. The simulations were made for an XPS configuration with a fixed angle between the X‐ray source (i.e. for the sample‐tilting mode of ARXPS) and with Al and Cu Kα X‐ray sources. The no‐loss intensities changed appreciably as elastic scattering was switched ‘on’ and ‘off’, but changing the analyzer‐acceptance angle had a smaller effect. Ratios of intensities for each line from the overlayer film for the least realistic model condition (elastic scattering switched ‘off’, small analyzer‐acceptance angle) to those from the most realistic model condition (elastic scattering switched ‘on’, finite analyzer‐acceptance angle) changed relatively slowly with emission angle, but the corresponding intensity ratio for the Si(substrate) 2p line changed appreciably with emission angle. The latter changes, in particular, indicate that neglect of elastic‐scattering effects can lead to erroneous results in the analysis of measured ARXPS data. The elastic‐scattering effects were larger in HfO1.9N0.1 than in SiO1.6N0.4 (due to the larger average atomic number in the former compound) and were larger with the Al Kα X‐ray source than with the Cu Kα source because of the larger cross sections for elastic scattering at the lower photoelectron energies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Structural and electrical properties of HfO2 gate-dielectric metal-oxide-semiconductor (MOS) capacitors deposited by sputtering are investigated. The HfO2 high-k thin films have been deposited on p-type <100> silicon wafer using RF-Magnetron sputtering technique. The Ellipsometric, FTIR and AFM characterizations have been done. The thickness of the as deposited film is measured to be 35.38 nm. Post deposition annealing in N2 ambient is carried out at 350, 550, 750 °C. The chemical bonding and surface morphology of the film is verified using FTIR and AFM respectively. The structural characterization confirmed that the thin film was free of physical defects and root mean square surface roughness decreased as the annealing temperature increased. The smooth surface HfO2 thin films were used for Al/HfO2/p-Si MOS structures fabrication. The fabricated Al/HfO2/p-Si structure had been used for extracting electrical properties such as dielectric constant, EOT, interface trap density and leakage current density through capacitance voltage and current voltage measurements. The interface state density extracted from the GV measurement using Hill Coleman method. Sample annealed at 750 °C showed the lowest interface trap density (3.48 × 1011 eV−1 cm−2), effective oxide charge (1.33 × 1012 cm−2) and low leakage current density (3.39 × 10−9 A cm−2) at 1.5 V.  相似文献   

12.
The reaction of Rb2S3, Ta and S in a 1.3 : 1 : 5.6 molar ratio at 400 °C yields red‐orange crystals of the new ternary compound Rb6Ta4S22 being the first tantalum polysulfide containing the dimeric complex anion [Ta4S22]6–. The polysulfide anions are composed of two Ta2S11 subunits which are linked to Ta4S22 units via terminal sulfur ligands. The Ta5+ centers are coordinated by S22– and S2– ligands according to [(Ta22‐η21‐S2)32‐S2)(S)2)22‐η11‐S2)]6–. Every Ta5+ ion is surrounded by seven sulfur ions forming a strongly distorted pentagonal bipyramid. In the crystal structure the discrete [Ta4S22]6– anions are stacked parallel to the crystallographic b‐axis. The Rb+ cations are located between these stacks. Rb6Ta4S22 crystallizes in the monoclinic space group P21/c (No. 14) with a = 11.8253(9) Å, b = 7.9665(4) Å, c = 19.174(2) Å, β = 104.215(9)°, V = 1751.0(2) Å3, Z = 2.  相似文献   

13.
Mono- and multilayer HfO2 sol–gel thin films have been deposited on silicon wafers by dip-coating technique using a solution based on hafnium ethoxide as precursor. The densification/crystallization process was achieved by classical annealing between 400 and 600 °C for 0.5 h (after drying at 100 °C). Systematic TEM studies were performed to observe the evolution of the thin film structure depending on the annealing temperature. The overall density of the films was determined from RBS spectrometry correlated with cross section (XTEM) thickness measurements. After annealing at 450 °C the films are amorphous with a nanoporous structure showing also some incipient crystallization. After annealing at 550 °C the films are totally crystallized. The HfO2 grains grow in colonies having the same crystalline orientation with respect to the film plane, including faceted nanopores. During annealing a nanometric SiO2 layer is formed at the interface with the silicon substrate; the thickness of this layer increases with the annealing temperature. Capacitive measurements allowed determining the value of the dielectric constant as 25 for four layer films, i.e. very close to the value for the bulk material.  相似文献   

14.
Na0.74Ta3O6, a Low‐Valent Oxotantalate with Multiple Ta–Ta Bonds The title compound was prepared in a sealed tantalum tube through the reaction of Ta2O5, tantalum and Na2CO3 in a NaCl flux at 1570 K within 5 d. The crystal structure of Na0.74Ta3O6 (a = 713.5(1), b = 1027.4(2), c = 639.9(1) pm, Immm, Z = 4) was determined by single crystal X‐ray means. The structure is isomorphous with NaNb3O5F [1]. The characteristic structural units are triply bonded Ta12 dumb‐bells with eight square‐prismatically co‐ordinated O ligands. Four Ta2, each octahedrally surrounded by O atoms, are side‐on bonded weakly to the binuclear Ta2O8 complex, thus forming a Ta6 propellane‐like cluster. The lattice parameters of three additional MxTa3O6 phases, M = Li, Mn, and Yb, are reported.  相似文献   

15.
Good accuracy in depth profile analyses of nitrogen in ultrathin oxynitride films is desirable for process development and routine process monitoring. Low energy SIMS is one of the techniques that has found success in the accurate characterization of thin oxynitride films. This work investigated the artifacts in a typical depth profile analysis of nitrogen with the current SIMS technique and the ways to improve the accuracy by selecting optimal analytical conditions. It was demonstrated that surface roughness developed rapidly in a SiO2/Si stack when it was bombarded with an O2+ beam at 250 eV and angle of incidence from 70 to 79° . The roughness caused distortion in the measured depth profiles of nitrogen and the major component elements. However, the above roughness and the distortion in the depth profiles can be eliminated by using a 250 eV O2+ beam at an angle of incidence above 80° . Depth profile analyses with a 250 eV 83° O2+ beam exhibited minimal surface roughening and insignificant variation in the secondary ion yield of SiN? from SiO2 bulk to the SiO2/Si interface, facilitating an accurate analysis of nitrogen distribution in a SiO2/Si stack. In addition, depth profiles of the major component elements such as 18O? and 28Si? delivered clear information on the location of the SiO2/Si interface. Using the new approach, we compared nitrogen distribution in thin SiNO films with the decoupled‐plasma nitridation (DPN) at various powers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
[{(CH3)3Si}3C–Li–C{Si(CH3)3}3][Li · 3(OC4H8)] and {(CH3)3Si}3C–Li · O=C(Si(CH3)3)2, two New Adducts of Lithium Trisylmethanide Sublimation of (Tsi–Li) · 2 THF (Tsi = –C(Si(CH3)3)3) at 180 °C and 10–4 hPa gives (Tsi–Li) · 1.5 THF in very low yield. The X‐ray structure determination shows an almost linear [Tsi–Li–Tsi] anion connected by short agostic Li…C contacts with the threefold THF‐coordinated Li‐cation. Base‐free Tsi–Li, solved in toluene is decomposed by oxygen, forming the strawberry‐colored ketone O=C(SiMe3)2, which forms an 1 : 1 adduct with undecomposed Tsi–Li. The X‐ray structure elucidation of this compound is also discussed.  相似文献   

17.
Glasses along the composition line 0.5Al2O3–xSiO2 (1 ≤ x ≤ 6) were prepared via a novel sol–gel route using tetraethylorthosilicate and aluminum lactate as precursors. The structural evolution from solution to gel to glass is monitored by standard 27Al and 29Si nuclear magnetic resonance (NMR) spectroscopies, revealing important insights about molecular level mechanisms occurring at the various stages of glass formation. Under the experimental conditions reported, silica and alumina precursors undergo homoatomic condensation processes when the gel is heat treated at about 100 and 300 °C, respectively, and only little heteroatomic co-condensation occurs in this temperature range. The latter is promoted only upon elimination of the residual lactate and water ligands upon annealing the gels above 300 °C. Following calcination at 650 °C, mesoporous glasses are obtained, having average pore diameter of about 3 nm and a surface areas near 500 m2/g. Si–O–Al connectivities are detected by 29Si magic angle spinning (MAS)-NMR. 27Al MAS-NMR spectra reveal aluminum in four-, five- and six-coordination. The spectra differ significantly from those of other sol–gel derived Al2O3–SiO2 materials prepared from different precursor routes, suggesting that the lactate route results in a higher degree of compositional homogeneity.  相似文献   

18.
Cs4K2CuSi2O8: Synthesis, Crystal Structure, UV‐Vis‐IR Data Cs4K2CuSi2O8 may be obtained via a redox reaction of KCuO2 in the presence of Cs2O and SiO2 with the container material (Cu) at 450 °C as blue single crystals which are sensitive to moisture. Powder samples were obtained by annealing intimate mixtures of the binary oxides under an inert gas atmosphere (Ar) in sealed Ag containers at 500 °C. The crystal structure contains isolated trimeric anions of [O2SiO2CuO2SiO2]6–. Cu2+ in square‐planar coordination share trans‐edges with [SiO4] tetrahedra. Spectroscopic investigations focus on the bonding situation of the [CuO4] unit (AOM) and characteristic vibrational modes of the silicate.  相似文献   

19.
Alkali niobates and tantalates are currently important lead‐free functional oxides. The formation and decomposition energetics of potassium tantalum oxide compounds (K2O?Ta2O5) were measured by high‐temperature oxide melt solution calorimetry. The enthalpies of formation from oxides of KTaO3 perovskite and defect pyrochlores with K/Ta ratio of less than 1 stoichiometry—K0.873Ta2.226O6, K1.128Ta2.175O6, and K1.291Ta2.142O6—were experimentally determined, and the values are (?203.63±2.92) kJ mol?1 for KTaO3 perovskite, and (?339.54±5.03) kJ mol?1, (?369.71±4.84) kJ mol?1, and (?364.78±4.24) kJ mol?1, respectively, for non‐stoichiometric pyrochlores. That of stoichiometric defect K2Ta2O6 pyrochlore, by extrapolation, is (?409.87±6.89) kJ mol?1. Thus, the enthalpy of the stoichiometric pyrochlore and perovskite at K/Ta=1 stoichiometry are equal in energy within experimental error. By providing data on the thermodynamic stability of each phase, this work supplies knowledge on the phase‐formation process and phase stability within the K2O?Ta2O5 system, thus assisting in the synthesis of materials with reproducible properties based on controlled processing. Additionally, the relation of stoichiometric and non‐stoichiometric pyrochlore with perovskite structure in potassium tantalum oxide system is discussed.  相似文献   

20.
In this study, we describe the deposition of Hf and Mo metal layers individually on Ta to compose new buffer layers, ie, Ta/Hf and Ta/Mo, where CoFeB/MgO stacks are deposited using magnetron sputtering. The synthesised Ta/Hf buffer has higher surface roughness, while the Ta/Mo buffer has lower surface roughness as compared with the Ta buffer. The surface roughness of the buffer appears to influence the interface of the subsequently deposited layers, resulting in rougher or smoother CoFeB/MgO interfaces. Additionally, we present a report on the magnetic properties of Ta, Ta/Hf, and Ta/Mo buffer samples. As the annealing temperature is below 200 °C, the saturation magnetisation (Ms) values for all buffer layers increase at similar rates, whereas the effective magnetic anisotropy energy (Keff) values increase at varying rates. After annealing at 350 °C, Keff reaches its maximum value for Ta/Hf and Ta/Mo buffer layers, whereas the CoFeB/MgO interface width decreases to a minimum value. The width increases as the annealing temperature is increased over 350 °C, and Keff gradually decreases with increase in the annealing temperature. The CoFeB/MgO interface width is primarily dependent on the buffer/CoFeB interface width, which is a critical parameter to obtain high perpendicular magnetic anisotropy (PMA) and high‐quality films. This work provides perspectives for understanding and controlling PMA from the viewpoint of interfacial structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号