首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spectrum of the Zn-like Kr VII ion, excited in a capillary discharge and recorded with a high resolution in the wavelength range of 300–1000 Å, was studied. Previously performed identification of the transitions from the levels of the 4s4f, 4s5s, 4s5p, and 4s5d configurations is confirmed and extended, and the energies of these levels are specified. The (4p 2+4s4d)?4p4d and (4p 2+4s5s)?4p5s transitions are identified for the first time, and the energies of all the levels of the 4p4d and 4p5s configurations are determined. The results of the analysis performed are confirmed by semiempirical calculations in terms of the Hartree-Fock method. These results are also shown to conform to the experimental data obtained for lighter ions of the Zn I isoelectronic sequence.  相似文献   

2.
The theoretical and observational consequences of thermodynamics of open systems which allow matter creation, are investigated in modified f(R, T) (R is the Ricci scalar and T is the trace of energy-momentum tensor) theory of gravity within the framework of a flat Friedmann-Robertson-Walker line element. The simplest model f(R, T)=R+2f(T) with “gamma-law” equation of state p = (γ?1)ρ is assumed to obtain the exact solution. A power-law expansion model is proposed by considering the natural phenomenological particle creation rate ψ = 3β n H, where β is a pure number of the order of unity, n the particle number density and H is the Hubble parameter. A Big Rip singularity is observed for γ<0 describing phantom cosmology. The accelerated expansion of the Universe is driven by the particle creation. The density parameter shows the negative curvature of the Universe due to particle creation. The entropy increases with the evolution of the Universe. Some kinematics tests such as lookback time, luminosity distance, proper distance, angular diameter versus redshift are discussed in detail to observe the role of particle creation in early and late time evolution of the Universe.  相似文献   

3.
We investigate quantum Fisher information (QFI) for s u(2) atomic coherent states and s u(1, 1) coherent states. In this work, we find that for s u(2) atomic coherent states, the QFI with respect to \(\vartheta ~(\mathcal {F}_{\vartheta })\) is independent of φ, the QFI with respect to \(\varphi (\mathcal {F}_{\varphi })\) is governed by ??. Analogously, for s u(1,1) coherent states, \(\mathcal {F}_{\tau }\) is independent of φ, and \(\mathcal {F}_{\varphi }\) is determined by τ. Particularly, our results show that \(\mathcal {F}_{\varphi }\) is symmetric with respect to ?? = π/2 for s u(2) atomic coherent states. And for s u(1,1) coherent states, \(\mathcal {F}_{\varphi }\) also possesses symmetry with respect to τ = 0.  相似文献   

4.
This paper contains the study of spherically symmetric perfect fluid collapse in the frame work of f(R, T) modified theory of gravity. We proceed our work by considering the non-static spherically symmetric background in the interior and static spherically symmetric background in the exterior regions of the star. The junction conditions between exterior and interior regions are presented by matching the exterior and interior regions. The field equations are solved by taking the assumptions that the Ricci scalar as well as the trace of energy-momentum tensor are to be constant, for a particular f(R, T) model. By inserting the solution of the field equations in junction conditions, we evaluate the gravitational mass of the collapsing system. Also, we discuss the apparent horizons and their time formation for different possible cases. It is concluded that the term f(R 0, T 0) behaves as a source of repulsive force and that’s why it slowdowns the collapse of the matter.  相似文献   

5.
In this communication we have investigated Bianchi type-II dark energy (DE) cosmological models with and without presence of magnetic field in modified f(R, T) gravity theory as proposed by Harko et al. (Phys. Rev. D, 84, 024020, 2011). The exact solution of the field equations is obtained by setting the deceleration parameter q as a time function along with suitable assumption the scale factor \(a(t)= [sinh(\alpha t)]^{\frac {1}{n}}\), α and n are positive constant. We have obtained a class of accelerating and decelerating DE cosmological models for different values of n and α. The present study believes that the mysterious dark energy is the main responsible force for accelerating expansion of the universe. For our constructed models the DE candidates cosmological constant (Λ) and the EoS parameter (ω) both are found to be time varying quantities. The cosmological constant Λ is very large at early time and approaches to a small positive value at late time whereas the EoS parameters is found small negative at present time. Physical and kinematical properties of the models are discussed with the help of pictorial representations of the parameters. We have observed that our constructed models are compatible with recent cosmological observations.  相似文献   

6.
In this work I present a generalization of f(R, T) gravity, by allowing the speed of light to vary. Cosmological solutions are presented for matter and radiation-dominated universes, the former allowing the universe expansion to accelerate while the latter contemplating a possible alternative to inflationary scenario. Remarkably, standard gravity is always retrieved for a special case of f(R, T).  相似文献   

7.
Ferromagnetism and ferroelectricity in Eu monochalcogenides have been investigated by ab initio density functional theory in the DFT+U approach. Exchange interaction parameters and Curie temperatures under pressure are studied and discussed using Heisenberg Hamiltonian with first and second-nearest-neighbor interactions. The calculations showed that the hydrostatic pressure perfectly improves the Curie temperature (EuO: T C = 175 K; EuS: T C = 33.8 K) and in the other hand it cannot induce the spontaneous polarization (P s ). The effect of uniaxial and biaxial pressure is also studied. Although the uniaxial strains slightly increases the Curie temperature, it ensures the ferrolectricity in these systems by producing a spontaneous polarization of the order of P s (EuO) = 57.50 μC/cm2 and P s (EuS) = 42.86 μC/cm2 with pressures of 5% and 4%, respectively. The search for new model systems is a necessity to better understand the physics related to multiferroïc materials and to consider possible applications.  相似文献   

8.
The contributions to the parameters S, T, and U of radiative corrections from the doublets of scalar leptoquarks and scalar gluons are analyzed within the minimal model based on four-color symmetry of the Pati-Salam type. It is shown that current experimental data on the parameters S, T, and U admit the existence of relatively light scalar leptoquarks and scalar gluons (of mass lower than 1 TeV), the best fit to experimental data being attained at mass values not greater than 400 GeV. In particular, the existence of scalar leptoquarks of mass below 300 GeV is found to be compatible with data on the parameters S, T, and U at χ2 < 3.1 (3.2) for mH = 115 (300) GeV as against χ SM 2 = 3.5 (5.0) in the Standard Model. The mass of the lightest scalar gluon is then predicted to be less than 850 (720) GeV. It is emphasized that the aforementioned doublets of scalar leptoquarks and scalar gluons can play a significant role in processes involving a t quark at LHC.  相似文献   

9.
We present new results of analysis of top-quark differential cross sections obtained by the CMS Collaboration in pp collisions in the framework of the z-scaling approach. The spectra are measured over a wide range of collision energy \(\sqrt s = 7,8,13TeV\) and transverse momentum p T = 30?500 GeV/c of top-quark using leptonic and jet decay modes. Flavor independence of the scaling function ψ(z) is verified in the new kinematic range. The results of analysis of the top-quark spectra obtained at the LHC are compared with similar spectra measured in \(\overline p p\) collisions at the Tevatron energy \(\sqrt s = 1.96TeV\). A tendency to saturation of ψ(z) for the process at low z and a power-law behavior of ψ(z) at high z is observed. The measurements of high-p T is observed. The measurements of highspectra of the top-quark production at highest LHC energy is of interest for verification of self-similarity of particle production, understanding flavor origin and search for new physics symmetries with top-quark probe.  相似文献   

10.
The fundamentals of the theory of the electronic structure of impurity clusters and the results of numerical calculations for the iron-, lanthanum-, and actinium-group ions in Me+n: [L]k clusters are presented. The effects of the interionic distance and ligands in the Me+n: [L]k clusters on the electronic structure of the nl N and nlN?1nl′ configurations of the 3d, 4f, and 5f ions are considered. The correspondence between the optical and x-ray spectra of different impurity crystals is also analyzed.  相似文献   

11.
The gyromagnetic ratios (g-factors) belong to the most important characteristics of atoms. For the 4p4f configuration of a germanium atom experimental values of g-factors are available only for four levels, while similar experimental data on the 4p5f configuration of Ge I are absent. Therefore, a theoretical study of the fine and Zeeman structures is topical for determining the gyromagnetic ratios. All the calculations are performed in the one-configuration approximation with the energy-operator matrix containing a maximum possible number of interactions, including magnetic: spin-orbit (own and other), spin-spin, and also orbitorbit interaction. The fine structure has been examined in three (LS, LK, and jK) approximations in order to establish the nature of coupling in the systems studied and the reliability of g-factors. Apart from the g-factors, in studying the Zeeman splitting, its specific features—the crossing and anticrossing fields of magnetic components— have been determined. A comparative analysis of g-factors was performed that showed that our results are in agreement with the available, albeit few in number, experimental data. At all stages, the corresponding energy-operator matrices were numerically diagonalized, i.e., all the results presented in the paper were obtained in the intermediate coupling scheme.  相似文献   

12.
We discuss dark-energy cosmological models in f(G) gravity. For this purpose, a locally rotationally symmetric Bianchi type I cosmological model is considered. First, exact solutions with a well-known form of the f(G) model are explored. One general solution is discussed using a power-law f(G) gravity model and physical quantities are calculated. In particular, Kasner’s universe is recovered and the corresponding f(G) gravity models are reported. Second, the energy conditions for the model under consideration are discussed using graphical analysis. It is concluded that solutions with f(G) = G5/6 support expansion of universe while those with f(G) = G1/2 do not favor the current expansion.  相似文献   

13.

Background

Parkinson's disease, a prevalent neurodegenerative disease, is characterized by the reduction of dopaminergic neurons resulting in the loss of motor control, resting tremor, the formation of neuronal inclusions and ultimately premature death. Two inherited forms of PD have been linked to mutations in the α-synuclein and parkin genes. The parkin protein functions as an ubiquitin ligase targeting specific proteins for degradation. Expression of human α-synuclein in Drosophila neurons recapitulates the loss of motor control, the development of neuronal inclusions, degeneration of dopaminergic neurons and the ommatidial array to provide an excellent genetic model of PD.

Results

To investigate the role of parkin, we have generated transgenic Drosophila that conditionally express parkin under the control of the yeast UAS enhancer. While expression of parkin has little consequence, co-expression of parkin with α-synuclein in the dopaminergic neurons suppresses the α-synuclein-induced premature loss of climbing ability. In addition directed expression of parkin in the eye counteracts the α-synuclein-induced degeneration of the ommatidial array. These results show that parkin suppresses the PD-like symptoms observed in the α-synuclein-dependent Drosophila model of PD.

Conclusion

The highly conserved parkin E3 ubiquitin ligase can suppress the damaging effects of human α-synuclein. These results are consistent with a role for parkin in targeting α-synuclein to the proteasome. If this relationship is conserved in humans, this suggests that up-regulation of parkin should suppress α-synucleinopathic PD. The development of therapies that regulate parkin activity may be crucial in the treatment of PD.
  相似文献   

14.
Isomeric ratios (IR) in the (p, n) and (d, 2n) reactions are considered. The dependence of IR values on the projectile type and energy, the target- and product-nucleus spin, the spin difference between the isomeric and ground states of products, and the product mass number is discussed. The isomeric ratios for 46 product nuclei (from 44m,gSc to 127m,gXe) obtained in reactions where target and product nuclei have identical mass numbers were calculated at energies from the reaction threshold to 50 MeV (with a step of ΔE = 1 MeV). The calculations in question were performed with the aid of the TALYS 1.4 code package. The calculated IR values were compared with their experimental counterparts available from the literature (EXFOR database). In the majority of cases, the calculated IR values agree well with the experimental data in question. It is noteworthy that the IR values obtained in (d, 2n) reactions are substantially greater than those in (p, n) reactions.  相似文献   

15.
In the standard formulation, the f(T) field equations are not invariant under local Lorentz transformations, and thus the theory does not inherit the causal structure of special relativity. Actually, even locally violation of causality can occur in this formulation of f(T) gravity. A locally Lorentz covariant f(T) gravity theory has been devised recently, and this local causality problem seems to have been overcome. The non-locality question, however, is left open. If gravitation is to be described by this covariant f(T) gravity theory there are a number of issues that ought to be examined in its context, including the question as to whether its field equations allow homogeneous Gödel-type solutions, which necessarily leads to violation of causality on non-local scale. Here, to look into the potentialities and difficulties of the covariant f(T) theories, we examine whether they admit Gödel-type solutions. We take a combination of a perfect fluid with electromagnetic plus a scalar field as source, and determine a general Gödel-type solution, which contains special solutions in which the essential parameter of Gödel-type geometries, \(m^2\), defines any class of homogeneous Gödel-type geometries. We show that solutions of the trigonometric and linear classes (\(m^2 < 0\) and \(m=0\)) are permitted only for the combined matter sources with an electromagnetic field matter component. We extended to the context of covariant f(T) gravity a theorem which ensures that any perfect-fluid homogeneous Gödel-type solution defines the same set of Gödel tetrads \(h_A^{~\mu }\) up to a Lorentz transformation. We also showed that the single massless scalar field generates Gödel-type solution with no closed time-like curves. Even though the covariant f(T) gravity restores Lorentz covariance of the field equations and the local validity of the causality principle, the bare existence of the Gödel-type solutions makes apparent that the covariant formulation of f(T) gravity does not preclude non-local violation of causality in the form of closed time-like curves.  相似文献   

16.
The conditions under which (n,γ) and (n,2n) reactions can help or hinder each other in neutron transmutation of long-lived fission products (LLFPs) are considered. Isotopic and elemental transmutation for the main long-lived fission products, 79Se, 93Zr, 99Tc, 107Pd, 126Sn, 129I, and 135Cs, are considered. The effect of (n,2n) reactions on the equilibrium amount of nuclei of the transmuted isotope and the neutron consumption required for the isotope processing is estimated. The aim of the study is to estimate the influence of (n,2n) reactions on efficiency of neutron LLFP transmutation. The code TIME26 and the libraries of evaluated nuclear data ABBN-93, JEF-PC, and JANIS system are applied. The following results are obtained: (1) The effect of (n,2n) reactions on the minimum number of neutrons required for transmutation and the equilibrium amount of LLFP nuclei is estimated. (2) It is demonstrated that, for three LLFP isotopes (126Sn, 129I, and 135Cs), (n,γ) and (n,2n) reactions are partners facilitating neutron transmutation. The strongest effect of (n,2n) reaction is found for 126Sn transmutation (reduction of the neutron consumption by 49% and the equilibrium amount of nuclei by 19%).  相似文献   

17.
Ginzburg-Landau (GL) theory is used to study surface superconductivity for UPt3 for various order parameter symmetries (OPS), andH c3 is found for all principal directions of the surface normal\(\hat n\) and the field [1]. Assuming specular reflection, and allowing for reorientation of the antiferromagnetic symmetry breaking field in the models withE 1g ,E 2g ,E 1u , orE 2u symmetry, the experiments of Keller et al. [2] with\(\hat n = \hat a\) can be qualitatively explained for all OPS except possiblyA 1u B 1u . The implied GL parameters then predict qualitatively different and OPS dependent behavior for\(\hat n = \hat a^* \) and\(\hat n = \hat c\). Study ofH c3 for these surfaces would give strong clues about the OPS of UPt3.  相似文献   

18.
We propose a model-independent formalism to numerically solve the modified Friedmann equations in the framework of f(T) teleparallel cosmology. Our strategy is to expand the Hubble parameter around the redshift \(z=0\) up to a given order and to adopt cosmographic bounds as initial settings to determine the corresponding \(f(z)\equiv f(T(H(z)))\) function. In this perspective, we distinguish two cases: the first expansion is up to the jerk parameter, the second expansion is up to the snap parameter. We show that inside the observed redshift domain \(z\le 1\), only the net strength of f(z) is modified passing from jerk to snap, whereas its functional behavior and shape turn out to be identical. As first step, we set the cosmographic parameters by means of the most recent observations. Afterwards, we calibrate our numerical solutions with the concordance \(\Lambda \)CDM model. In both cases, there is a good agreement with the cosmological standard model around \(z\le 1\), with severe discrepancies outer of this limit. We demonstrate that the effective dark energy term evolves following the test-function: \(f(z)={\mathcal {A}}+{\mathcal {B}}{z}^2e^{{\mathcal {C}}{z}}\). Bounds over the set \(\left\{ {\mathcal {A}}, {\mathcal {B}}, {\mathcal {C}}\right\} \) are also fixed by statistical considerations, comparing discrepancies between f(z) with data. The approach opens the possibility to get a wide class of test-functions able to frame the dynamics of f(T) without postulating any model a priori. We thus re-obtain the f(T) function through a back-scattering procedure once f(z) is known. We figure out the properties of our f(T) function at the level of background cosmology, to check the goodness of our numerical results. Finally, a comparison with previous cosmographic approaches is carried out giving results compatible with theoretical expectations.  相似文献   

19.
The modified theories of gravity, especially the f(R) gravity, have attracted much attention in the last decade. This paper is devoted to exploring plane-symmetric solutions in the context of metric f(R) gravity. We extend the work on static plane-symmetric vacuum solutions in f(R) gravity already available in the literature [1, 2]. The modified field equations are solved using the assumptions of both constant and nonconstant scalar curvature. Some well-known solutions are recovered with power-law and logarithmic forms of f(R) models.  相似文献   

20.
In the one-configuration approximation, in the formalism of irreducible tensor operators, and in the intermediate (real) coupling scheme, numerical values of the fine-structure parameters are determined for the 3p4f and 3p5f highly excited configurations of the P II phosphorus ion with the energy-operator matrix in the LK-coupling approximation. With these values of the fine-structure parameters, the energy-operator matrix is numerically diagonalized in the LS-coupling approximation. The gyromagnetic ratios calculated in both basis sets in the absence of a field are compared with one another, as well as with their vector counterparts and the experimental g-factors available for the 3p4f configuration. The experimental and theoretical g-factors calculated with the LS basis set are in good agreement with the sole exception of the 3 F 2 level. Note that the calculation of g-factors from the Zeeman splitting in the linear region totally confirmed their agreement with the values calculated in the LS basis set (g LS ) in the absence of a field. The gyromagnetic ratios are the main objectives of this and previous papers, especially for configurations for which experimental data are absent. Apart from the g-factors, the specific features of Zeeman splitting (the crossings and anticrossings of magnetic components) in the 3p5f configurations were determined. These data are to be compared with results of future experiments. Comparison of gyromagnetic ratios calculated in the intermediate coupling scheme with their vector counterparts showed that most levels of the configurations studied are closer than in the LK-coupling scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号