首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two‐dimensional (2D) and three‐dimensional (3D) quantitative structure–activity relationships (QSARs) of 22 thiazolidine analogs with antiproliferative activity expressed as pIC50, which is defined as the negative value of the logarithm of necessary molar concentration of these compounds to cause 50% growth inhibition against melanoma cell lines WM‐164, have been studied by using a combined method of the DFT, MM2 and statistics for 2D, as well as the comparative molecular field analysis (CoMFA) method for 3D. The established 2D‐QSAR model in training set comprised of random 18 compounds shows not only significant statistical quality, but also predictive ability, with the square of adjusted correlation coefficient (R = 0.832) and the square of the cross‐validation coefficient (q2 = 0.803). The same model was further applied to predict pIC50 values of the four compounds in the test set, and the resulting R reaching 0.784, further confirms that this 2D‐QSAR model has high predictive ability. The 3D‐QSAR model also shows good correlative and predictive capabilities in terms of R2 (0.956) and q2 (0.615) obtained from CoMFA model. Further, the robustness of the CoMFA model was verified by bootstrapping analysis (100 runs) with R (0.979) and SDbs (0.056). It is very interesting to find that the results from 2D‐ and 3D‐QSAR analyses accord with each other, and they all show that the steric interaction plays a crucial role in determining the cytotoxicities of the compounds, and that selecting a moderate‐size or appropriate‐hydrophobicity substituent R as well as increasing the negative charges of C4 on phenyl ring at the same time are advantageous to improving the cytotoxicity. Such results can offer some useful theoretical references for directing the molecular design and understanding the action mechanism of this kind of compound with antiproliferative activity. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

2.
Phosphoinositide-dependent protein kinase-1 (PDK1) is a Ser/Thr kinase which phosphorylates and activates members of the AGC kinase group known to control processes such as tumor cell growth, protection from apoptosis, and tumor angiogenesis. In this paper, CoMFA and CoMSIA studies were carried out on a training set of 56 conformationally rigid indolinone inhibitors of PDK1. Predictive 3D QSAR models, established using atom fit alignment rule based on crystallographic-bound conformation, had cross-validated (r cv2) values of 0.738 and 0.816 and non-cross-validated (r ncv2) values of 0.912 and 0.949 for CoMFA and CoMSIA models, respectively. The predictive ability of the CoMFA and CoMSIA models was determined using a test set of 14 compounds, which gave predictive correlation coefficients (r pred2) of 0.865 and 0.837, respectively. Structure-based interpretation of the CoMFA and CoMSIA field properties provided further insights for the rational design of new PDK1 inhibitors. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
The inhibition of β-secretase (BACE1) is currently the main pharmacological strategy available for Alzheimer’s disease (AD). 2D QSAR and 3D QSAR analysis on some cyclic sulfone hydroxyethylamines inhibitors against β-secretase (IC50: 0.002–2.75 μM) were carried out using hologram QSAR (HQSAR), comparative molecular field analysis (CoMFA), and comparative molecular similarity indices analysis (CoMSIA) methods. The best model based on the training set was generated with a HQSAR q2 value of 0.693 and r2 value of 0.981; a CoMFA q2 value of 0.534 and r2 value of 0.913; and a CoMSIA q2 value of 0.512 and r2 value of 0.973. In order to gain further understand of the vital interactions between cyclic sulfone hydroxyethylamines and the protease, the analysis was performed by combining the CoMFA and CoMSIA field distributions with the active sites of the BACE1. The final QSAR models could be helpful in the design and development of novel active BACE1 inhibitors.  相似文献   

4.
Three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were performed based on a series of azaindole carboxylic acid derivatives that had previously been reported as promising HIV-1 integrase inhibitors. Docking studies to explore the binding mode were performed based on the highly active molecule 36. The best docked conformation of molecule 36 was used as template for alignment. The comparative molecular field analysis (CoMFA) model (including steric and electrostatic fields) yielded the cross validation q 2 = 0.655, non-cross validation r 2 = 0.989 and predictive r 2 pred = 0.979. The best comparative molecular similarity indices analysis (CoMSIA) model (including steric, electrostatic, hydrophobic and hydrogen-bond acceptor fields) yielded the cross validation q 2 = 0.719, non-cross validation r 2 = 0.992 and predictive r 2 pred = 0.953. A series of new azaindole carboxylic acid derivatives were designed and the HIV-1 integrase inhibitory activities of these designed compounds were predicted based on the CoMFA and CoMSIA models.  相似文献   

5.
Recently, we reported structurally novel PDE4 inhibitors based on 1,4-benzodiazepine derivatives. The main interest in developing bezodiazepine-based PDE4 inhibitors is in their lack of adverse effects of emesis with respect to rolipram-like compounds. A large effort has thus been made toward the structural optimization of this series. In the absence of structural information on the inhibitor binding mode into the PDE4 active site, 2D-QSAR (H-QSAR) and two 3D-QSAR (CoMFA and CoMSIA) methods were applied to improve our understanding of the molecular mechanism controlling the PDE4 affinity of the benzodiazepine derivatives. As expected, the CoMSIA 3D contour maps have provided more information on the benzodiazepine interaction mode with the PDE4 active site whereas CoMFA has built the best tool for activity prediction. The 2D pharmacophoric model derived from CoMSIA fields is consistent with the crystal structure of the PDE4 active site reported recently. The combination of the 2D and 3D-QSAR models was used not only to predict new compounds from the structural optimization process, but also to screen a large library of bezodiazepine derivatives.  相似文献   

6.
7.
Comparative molecular field analysis (CoMFA),a three dimensional quantitative structure-activity relationship (3D-QSAR) method was applied to a series of diindolylmethane(DIM) analogs to study the relationship between their structure and their induction of CYP 1A1-associated ethoxyresorufin-O-deethylase(EROD) activity.A DISCO model of pharmacophore was derved to guide the superposition of the compounds.The coefficient of cross-validation (q^2) and non cross-validation(r^2) for the model established by the study are 0.827 and 0.988 respectively,the value of variance ratio (F) is 103.53 and standard error estimate (SEE)is 0.044.These values indicate that the CoMFA model derived is significant and might have a good prediction for the catalytic activity of DIM compounds.As a consequence,the predicted activity values of new designed compounds were all higher than that of the reported value.  相似文献   

8.
9.
10.
Coumarinyl thiosemicarbazone derivatives (1E)‐1‐(1‐(2‐oxo‐2H‐chromen‐3‐yl)ethylidene)thiosemicarbazide (OCET), (1E)‐1‐(1‐(6‐bromo‐2‐ oxo‐2H‐chromen‐3‐yl)ethylidene)thiosemicarbazide (BOCET) and 1‐(1‐(3‐oxo‐3H‐benzo[f]chromen‐2‐yl)ethylidene)thiosemicarbazide (NOCET) and their Rh(III) complexes were synthesized, the characterization was carried out by elemental analysis, IR, UV–Visible, mass, magnetic measurement and molar conductance techniques. Data interpretation of the Rh(III) complexes indicates that the ligands of coumarinyl thiosemicarbazone derivatives were formed in stoichiometric ratios as 1:2 (metal: ligand). The studied ligands act as a bidentate ligand by using both azomethine nitrogen and thiol sulphur as monoanion center of donation. The theoretical conformational structure analyses were performed using density functional theory for ligands and complexes at B3LYP functional with 6‐31G(++)d,p basis set for ligands and LANL2DZ basis set for complexes. The charge distribution within the ligands and its Rh(III) complexes was calculated using Mulliken population analysis of (MPA) and natural population analysis (NPA). The antibacterial activity of the prepared compounds was tested against some types of Gram positive and negative bacteria. Molecular docking investigation proved that, the ligands and complexes had interesting interactions with active site amino acids of ribosyltransferase (code: 3GEY).  相似文献   

11.
A density functional theory calculation is used to investigate the atomic oxygen (O) stability over platinum (Pt) and Pt‐based alloy surfaces. Here, the stability is connected with the preferential adsorption sites for O chemisorptions and the adsorption energy. Thus, the interaction mechanism between atomic O and metal surfaces is studied by using charge transfer analysis. In this present paper, atomic structure and binding energy of oxygen adsorption on the Pt(111) are in a very good agreement with experiment and previous density functional theory calculations. Furthermore, we obtained that the addition of ruthenium (Ru) and molybdenum (Mo) on the pure Pt surface enhances the adsorption energy. Our charge transfer analysis shows that the largest charge transfer contributing to the metal‐O bonding formation is observed in the case of O/PtRuMo surface followed by O/PtRu surface. This is in consistency with metal d‐orbital characteristic, where Mo has much more empty d‐orbital than Ru in correspondence to accept electrons from atomic oxygen. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The theoretical studies on three‐dimensional quantitative structure activity relationship (3D‐QSAR) and action mechanism of a series of 2‐indolinone derivatives as tubulin inhibitors against human breast cancer cell line MDA‐MB‐231 have been carried out. The established 3D‐QSAR model from the comparative molecular field analysis (CoMFA) shows not only significant statistical quality but also predictive ability, with high correlation coefficient (R2 = 0.986) and cross‐validation coefficient (q2 = 0.683). In particular, the appropriate binding orientations and conformations of these 2‐indolinone derivatives interacting with tubulin are located by docking study, and it is very interesting to find that the plot of the energy scores of these compounds in DOCK versus the corresponding experimental pIC50 values exhibits a considerable linear correlation. Therefore, the inhibition mechanism that 2‐indolinone derivatives were regarded as tubulin inhibitors can be theoretically confirmed. Based on such an inhibition mechanism along with 3D‐QSAR results, some important factors improving the activities of these compounds were discussed in detail. These factors can be summarized as follows: the H atom adopted as substituent R1, the substituent R2 with higher electropositivity and smaller bulk, the substituents R4–R6 (on the phenyl ring) with higher electropositivity and larger bulk, and so on. These results can offer useful theoretical references for understanding the action mechanism, designing more potent inhibitors, and predicting their activities prior to synthesis. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

13.
Charge transfer (CT) resonance mechanisms of 2,2′‐bipyridine (2,2′‐BiPy), 2,4′‐bipyridine (2,4′‐BiPy), and 4,4′‐bipyridine (4,4′‐BiPy) on silver nanoparticle surfaces have been comparatively investigated by means of surface‐enhanced Raman scattering (SERS) at the excitation wavelengths of 457, 514, 633, and 785 nm. A combination of the electromagnetic (EM) and charge transfer (CT) contributions should affect the SERS intensities for the bipyridine compounds adsorbed on silver nanoparticle surfaces. The CT resonance is assumed to occur in dissimilar ways for the bipyridine compounds, as evidenced from their different excitation‐wavelength‐dependent SERS enhancement factors. Ab initio density functional theory (DFT) calculations at the level of B3LYP/LANL2DZ have been carried out for the bipyridine‐Ag complexes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Min-Joo Lee 《Tetrahedron letters》2010,51(29):3782-3785
The atomic charge distributions on each atom of the PAHs were obtained using the CHelpG and MK methods with the optimized structural parameters determined by DFT calculation at the level of BLYP/6-311++G(d,p). By comparing the experimentally obtained oxidation position(s) and the calculated atomic charges on carbon atoms of PAHs, we found that the oxidation reaction mainly occurred at the carbon(s) having the higher atomic charges.  相似文献   

15.
A Charge density analysis of CTB molecule in gas phase (Form I ) and the same present at the active site (Form II ) of p300 enzyme were performed for the wave functions obtained from the Density functional method (B3LYP) with the basis set 6‐311G**. This study has been carried out to understand the nature of conformational modification, charge redistribution and the change of electrostatic moments of the CTB molecule when present at the active site of p300. The difference of charge density distribution between both forms of CTB molecule explicitly indicates the effect of intermolecular interaction on CTB molecule in the active site. The dipole moment of CTB in the gas phase (9.6 D) has been significantly decreased (4.27 D) when it present at the active site of p300; this large variation is attributed to the charge redistribution in CTB, due to the intermolecular interaction between the CTB and the receptor p300 molecule. The electrostatic potential maps differentiate the difference of electrostatic potential between the two forms. A large electronegative region is found at the vicinity of oxygen and fluorine atoms. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

16.
In this study, the direct molecular structure implementations for calculating vibrational spectra and scaling factors, and infrared intensities at both the Hartree–Fock (HF) and density functional (B3LYP) levels of theory with 6‐31G(d), 6‐311G(d), 6‐31++G(d,p), and 6‐311++G(d,p) basis sets are presented. Also, vibrational frequencies have been investigated as dependence on the choice of method and basis set. The parameters of molecular geometry and vibrational frequencies values of 2‐aryl‐1,3,4‐oxadiazoles 5a–g in the ground state have been calculated. Theoretical determination of vibrational frequencies is quite useful both in understanding the relationship between the molecular structures and scaling factor. The data of 2‐aryl‐1,3,4‐oxadiazoles 5a–g display significant electronic properties provide the basis for future design of efficient materials having the oxadiazole core and theoretical IR studies. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

17.
In this paper, two 3‐dimensional quantitative structure‐activity relationship models for 60 human immunodeficiency virus (HIV)‐1 protease inhibitors were established using random sampling analysis on molecular surface and translocation comparative molecular field vector analysis (Topomer CoMFA). The non–cross‐validation (r2), cross‐validation (q2), correlation coefficient of external validation (Q2ext), and F of 2 models were 0.94, 0.80, 0.79, and 198.84 and 0.94, 0.72, 0.75, and 208.53, respectively. The results indicated that 2 models were reasonable and had good prediction ability. Topomer Search was used to search R groups in the ZINC database, 20 new compounds were designed, and the Topomer CoMFA model was used to predicate the biological activity. The results showed that 18 new compounds were more active than the template molecule. So the Topomer Search is effective in screening and can guide the design of new HIV/AIDS drugs. The mechanism of action was studied by molecular docking, and it showed that the protease inhibitors and Ile50, Asp25, and Arg8 sites of HIV‐1 protease have interactions. These results have provided an insight for the design of new potent inhibitors of HIV‐1 protease.  相似文献   

18.
The configuration at C‐3 of the 3α‐ and 3β‐hydroxy metabolites of tibolone was studied by extensive application of one‐ and two‐dimensional 1H and 13C NMR spectroscopy combined with molecular modeling performed at the B3LYP/6–31G(d) level. Using HF and DFT GIAO methods, shielding tensors of the two molecules were computed; comparison of the calculated NMR chemical shifts with the experimental values revealed that the density functional methods produced the best results for assigning proton and carbon resonances. Although steroids are relatively large molecules, the present approach appears accurate enough to allow the determination of relative configurations by using calculated 13C resonances; the chemical shift of pairs of geminal α/β hydrogen atoms can also be established by using calculated 1H resonances. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
The Comparative Molecular Field Analysis (CoMFA) was developed to investigate a three-dimensional quantitative structure activity relationship (3D-QSAR) model of ligands for the sigma 1 receptor. The starting geometry of sigma-1 receptor ligands was obtained from the Tripos force field minimizations and conformations were decided from DISCOtech using the SYBYL 6.8. program. The structures of 48 molecules were fully optimized at the ab initio HF/3-21G* and semiempirical AM1 calculations using GAUSSIAN 98. The electrostatic charges were calculated using several methods such as semiempirical AM1, density functional B3LYP/3-21G*, and ab initio HF/3-21G*, MP2/3-21G* calculations within GAUSSIAN 98. Using the optimized geometries, the CoMFA results derived from the HF/3-21G method were better than those from AM1. The best CoMFA was obtained from HF/3-21G* optimized geometry and charges (R2 = 0.977). Using the optimized geometries, the CoMFA results derived from the HF/3-21G methods were better than those from AM1 calculations. The training set of 43 molecules gave higher R2 (0.989-0.977) from HF/3-21G* optimized geometries than R2 (0.966-0.911) values from AM1 optimized geometries. The test set of five molecules also suggested that HF/3-21G* optimized geometries produced good CoMFA models to predict bioactivity of sigma 1 receptor ligands but AM1 optimized geometries failed to predict reasonable bioactivity of sigma 1 receptor ligands using different calculations for atomic charges.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号