首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 840 毫秒
1.
Aluminium‐doped p‐type (Al‐p+) silicon emitters fabricated by means of a simple screen‐printing process are effectively passivated by plasma‐enhanced chemical‐vapour deposited amorphous silicon (a‐Si). We measure an emitter saturation current density of only 246 fA/cm2, which is the lowest value achieved so far for a simple screen‐printed Al‐p+ emitter on silicon. In order to demonstrate the applicability of this easy‐to‐fabricate p+ emitter to high‐efficiency silicon solar cells, we implement our passivated p+ emitter into an n+np+ solar cell structure. An independently confirmed conversion efficiency of 19.7% is achieved using n‐type phosphorus‐doped Czochralski‐grown silicon as bulk material, clearly demonstrating the high‐efficiency potential of the newly developed a‐Si passivated Al‐p+ emitter. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Atomic‐layer‐deposited aluminum oxide (AlOx) layers are implemented between the phosphorous‐diffused n+‐emitter and the Al contact of passivated emitter and rear silicon solar cells. The increase in open‐circuit voltage Voc of 12 mV for solar cells with the Al/AlOx/n+‐Si tunnel contact compared to contacts without AlOx layer indicates contact passivation by the implemented AlOx. For the optimal AlOx layer thickness of 0.24 nm we achieve an independently confirmed energy conversion efficiency of 21.7% and a Voc of 673 mV. For AlOx thicknesses larger than 0.24 nm the tunnel probability decreases, resulting in a larger series resistance. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We demonstrate industrially feasible large‐area solar cells with passivated homogeneous emitter and rear achieving energy conversion efficiencies of up to 19.4% on 125 × 125 mm2 p‐type 2–3 Ω cm boron‐doped Czochralski silicon wafers. Front and rear metal contacts are fabricated by screen‐printing of silver and aluminum paste and firing in a conventional belt furnace. We implement two different dielectric rear surface passivation stacks: (i) a thermally grown silicon dioxide/silicon nitride stack and (ii) an atomic‐layer‐deposited aluminum oxide/silicon nitride stack. The dielectrics at the rear result in a decreased surface recombination velocity of Srear = 70 cm/s and 80 cm/s, and an increased internal IR reflectance of up to 91% corresponding to an improved Jsc of up to 38.9 mA/cm2 and Voc of up to 664 mV. We observe an increase in cell efficiency of 0.8% absolute for the cells compared to 18.6% efficient reference solar cells featuring a full‐area aluminum back surface field. To our knowledge, the energy conversion efficiency of 19.4% is the best value reported so far for large area screen‐printed solar cells. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In the production of n‐type Si solar cells, B diffusion is commonly applied to form the p+ emitter. Up to now, Ag screen‐printing pastes, generally used to contact P emitters, had been incapable of reliably contact B emitters. Therefore, a small amount of Al is generally added to Ag pastes to allow for reasonable contact resistances. The addition of Al, however, results in deep metal spikes growing into the Si surface that can penetrate the emitter. Losses in open‐circuit voltage are attributed to these deep metal spikes. In this investigation we demonstrate, that state‐of‐the‐art Al‐free Ag screen‐printing pastes are capable to contact BBr3‐based B emitters covered with different dielectric layers and reach specific contact resistances <1 mΩ cm2. Bifacial n‐type solar cells with Al‐free Ag pastes on both sides show efficiencies of up to 18.3% and series resistances <0.5 Ω cm2. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

5.
Benzothiazole type butadienyl dyes containing a dithia‐15‐crown‐5 ( 2a ) or dithia‐18‐crown‐6 ether ( 2b ) moieties were synthesized. The structures of dyes 2a , b and their complexes with Ag+ and Pb2+ were studied by an X‐ray crystallography. It was found that the conformations of dithiacrown–ether moieties of dyes 2a , b are unfavorable for complex formation and change significantly upon binding of Ag+ or Pb2+. The complexation of 2a , b with Ag+, Cd2+, Pb2+, and Hg2+ in water–acetonitrile mixtures with different contents of water (PW = 0–75%, v/v) was studied by 1H NMR, UV–Vis spectroscopy, and polarography. In anhydrous acetonitrile, the stability constants of 1:1 complexes change in the sequence Cd2+ < Pb2+ ≤ Ag+ << Hg2+ in the case of 2a and in the sequence Cd2+ < Ag+ < Pb2+ << Hg2+ in the case of 2b . As PW increases, the thermodynamic stability of Ag+ complexes increases. The opposite effect is observed for the complexes with Cd2+, Pb2+, and Hg2+. When PW ~ 50%, the stability constants of complexes with Cd2+ and Pb2+ become too small to be measured. The selectivity of ligands 2a , b toward Hg2+ versus Ag+ is very high at any PW values (selectivity coefficients > 104). The complexation of 2a , b with Hg2+ at PW ≤ 50% is accompanied by a substantial hypsochromic effect. This allows dithiacrown‐containing butadienyl dyes to be used as selective optical molecular sensors for heavy metal ions, in particular, in aqueous solutions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
《光谱学快报》2013,46(4-5):617-634
Abstract

The complex formation between l‐histidine (HHis) and aluminum(III) ion in water solutions was studied by UV spectrophotometric and 27‐Al NMR measurements at 298 K. UV spectra were measured on solutions in which the total concentration of histidine was from 15.0 to 50.0 mmol/dm3 and the concentration ratio of histidine to aluminum was varied from 3∶1 to 10∶1 in the pH range between 4.2 and 6.0. The spectra were taken in the wavelength interval 240–340 nm. Nonlinear least‐squares treatment of the spectrophotometric data indicates the formation of the complexes Al(HHis)3+, Al(His)2+, Al(HHis)His2+, and Al2(OH)His4+ with the overall formation constants βp,q,r: log β1,1,1=11.90±0.04, log β1,1,0=7.25±0.08, log β1,2,1=20.1±0.1, and log β2,1,1=5.92±0.12 (p, q, r are stoichiometric indices for metal, ligand, and proton, respectively). 27Al‐NMR spectra were taken on solutions with the concentration of aluminum 50 mmol/dm3 and that of histidine 250 mmol/dm3. In the pH interval 5.0–6.1, two resonances at 9.5 ppm and 12.0 ppm were assigned to Al(HHis)2+ and Al(HHis)(His)2+ (or Al(OH)(HHis)2 2+), respectively.  相似文献   

7.
Polycrystalline silicon (poly‐Si) films were fabricated by aluminum (Al)‐induced crystallization of Si‐rich oxide (SiOx) films. The fabrication was achieved by thermal annealing of SiOx /Al bilayers below the eutectic temperature of the Al–Si alloy. The poly‐Si film resulting from SiO1.45 exhibited good crystallinity with highly preferential (111) orientation, as deduced from Raman scattering, X‐ray diffraction, and transmission electron microscopy measurements. The poly‐Si film is probably formed by the Al‐induced layer exchange mechanism, which is mediated by Al oxide.  相似文献   

8.
A series of Cs 4d and Al 2p spectra associated with valence‐band and cut‐off spectra have been used to characterize the interaction between caesium and tris(8‐hydroxyquinoline) aluminium (Alq3) molecules in a Cs‐doped Alq3 layer. The Cs 4d and Al 2p spectra were tuned to be very surface sensitive by selecting a photon energy of 120 eV at the National Synchrotron Radiation Research Center, Taiwan. A critical Cs concentration exists, above which a new Al 2p signal appears next to the Al 2p peak of Alq3 in the lower binding‐energy side. The Al 2p signal was analyzed and assigned as being contributed from a mixture of Alq2, Alq and Al. Experimental data supported the observation that bond cutting of Alq3 by the doped Cs atoms occurred at high Cs doping concentration.  相似文献   

9.
The pKas of 3‐pyridylboronic acid and its derivatives were determined spectrophotometrically. Most of them had two pKas assignable to the boron center and pyridine moiety. The pKa assignment performed by 11B nuclear magnetic resonance spectroscopy revealed that both boron centers in 3‐pyridylboronic acid [3‐PyB(OH)2] and the N‐methylated derivative [3‐(N‐Me)Py+B(OH)2] have strong acidities (pKa = 4.4 for both). It was found that introduction of a substituent to pyridine‐C atom in 3‐pyridylboronic acid drastically increased the acidity of the pyridinium moiety, but decreased the acidity of the boron center, whereas the introduction to pyridine‐N atom had no influence on the acidity of the boron center. Kinetic studies on the complexation reactions of 3‐pyridinium boronic acid [3‐HPy+B(OH)2] with 4‐isopropyltropolone (Hipt) carried out in strongly acidic aqueous solution indicated that the positive charge on the boronic acid influenced little on its reactivity; 3‐HPy+B(OH)2 reacts with Hipt and protonated H2ipt+, and its reactivity was in line with those of a series of boronic acids. Kinetics in weakly acidic aqueous solution revealed that 3‐HPy+B(OH)2 reacts with Hipt faster than its conjugate boronate [3‐HPy+B(OH)3], which is consistent with our recent results. The reactivity of 3‐(N‐Me)Py+B(OH)2 towards Hipt was also examined kinetically; the reactivities of 3‐(N‐Me)Py+B(OH)2 and 3‐(N‐Me)Py+B(OH)3 are almost the same as those of their original 3‐HPy+B(OH)2 and 3‐HPy+B(OH)3, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Stacks of aluminum oxide and silicon nitride are frequently used in silicon photovoltaics. In this Letter, we demonstrate that hydrogenated aluminum nitride can be an alternative to this dual‐layer stack. Deposited on 1 Ω cm p‐type FZ silicon, very low effective surface recombination velocities of 8 cm/s could be reached after firing at 820 °C. This excellent passivation is traced back to a high density of fixed charges at the interface of approximately –1 × 1012 cm–2 and a very low interface defect density below 5 × 1010 eV–1 cm–2. Furthermore, spectral ellipsometry measurements reveal that these aluminum nitride layers have ideal optical properties for use as anti‐reflective coatings. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The authors report upon the increased light‐output power (Pout) via a reduction in the forward voltage (Vf) for nonpolar a ‐plane GaN LEDs using Ni/Al/Ni/Au n‐type ohmic contacts. The specific contact resistivity of the Ni/Al/Ni/Au contact is found to be as low as 5.6 × 10–5 whereas that of a typical Ti/Al/Ni/Au contact is 6.8 × 10–4 Ω cm2, after annealing at 700 °C. The X‐ray photoelectron spectroscopy results show that the upward surface band bending is less pronounced for the Ni/Al contact compared to the Ti/Al contact, leading to a decrease in the effective Schottky barrier height (SBH). The Vf of the nonpolar LEDs decreases by 10% and Pout increases by 15% when the Ni/Al/Ni/Au scheme is used instead of the typical Ti/Al/Ni/Au metal scheme. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Microcrystalline silicon‐carbide (μc‐SiC:H) films were prepared using hot wire chemical vapor deposition at low substrate temperature. The μc‐SiC:H films were employed as window layers in microcrystalline silicon (μc‐Si:H) solar cells. The short‐circuit current density (JSC) in these n‐side illuminated n–i–p cells increases with increasing the deposition time tW of the μc‐SiC:H window layer from 5 min to 60 min. The enhanced JSC is attributed to both the high transparency and an anti‐reflection effect of the μc‐SiC:H window layer. Using these favourable optical properties of the μc‐SiC:H window layer in μc‐Si:H solar cells, a JSC value of 23.8 mA/cm2 and cell efficiencies above 8.0% were achieved with an absorber layer thickness of 1 μm and a Ag back reflector. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Sol–gel derived nano‐sized glass frits were incorporated into the Ag conductive ink for silicon solar cell metallization. This mixture was specifically formulated for inkjet printing on textured Si wafers with 80 nm thick SiNx anti reflection coating layers. The correlation between the contact resistance and interface microstructures were studied using scanning electron microscopy and transmission electron microscopy. In addition, the specific contact resistance between the front contact and emitter was measured at various firing conditions using the transfer length model. On an emitter with the sheet resistance of 60 Ω/sq, a specific contact resistance below 5 mΩ cm2 could be achieved at a peak firing temperature around 800 °C. We found that the incorporated nano‐glass frit act as a very effective fire through agent, and an abundant amount of Ag crystallites was observed along the interface glass layer. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

14.
A series of Al 2p, K 2p, O 1s and N 1s core‐level spectra have been used to characterize the interaction between potassium (K) and tris(8‐hydroxyquinoline) aluminium (Alq3) molecules in the K‐doped Alq3 layer. All core‐level spectra were tuned to be very surface sensitive in selecting various photon energies provided by the wide‐range beamline at the National Synchrotron Radiation Research Center, Taiwan. A critical K concentration (x = 2.4) exists in the K‐doped Alq3 layer, below which the K‐doped atoms generate a strained environment near the O and N atoms within 8‐quinolinoline ligands. This creates new O 1s and N 1s components on the lower binding‐energy side. Above the critical K coverage, the K‐doped atoms attach the O atoms in the Al—O—C bonds next to the phenoxide ring and replace Al—O—C bonds by forming K—O—C bonds. An Alq3 molecule is disassembled into Alq2 and Kq by bond cutting and bond formation. The Alq2 molecule can be further dissociated into Alq, or even Al, through subsequent formations of Kq.  相似文献   

15.
In this study, metal‐assisted etching (MAE) with nitric acid (HNO3) as a hole injecting agent has been employed to texture multi‐crystalline silicon wafers. It was previously proven that addition of HNO3 enabled control of surface texturing so as to form nano‐cone shaped structures rather than nanowires. The process parameters optimized for optically efficient texturing have been applied to multi‐crystalline wafers. Fabrication of p‐type Al:BSF cells have been carried out on textured samples with thermal SiO2/PECVD‐SiNx stack passivation and screen printed metallization. Firing process has been optimized in order to obtain the best contact formation. Finally, jsc enhancement of 0.9 mA/cm2 and 0.6% absolute increase in the efficiency have been achieved. This proves that the optimized MAE texture process can be successfully used in multi‐crystalline wafer texturing with standard passivation methods.

JV curves and SEM images of the nano and iso‐textured samples. jsc enhancement of 0.9 mA/cm2 together with 0.6% absolute efficiency gain was observed on nano‐textured samples.  相似文献   


16.
Poly(vinylpyrrolidone)‐stabilized silver nanoparticles deposited onto strained‐silicon layers grown on graded Si1−xGex virtual substrates are utilized for selective amplification of the Si–Si vibration mode of strained silicon via surface‐enhanced Raman scattering spectroscopy. This solution‐based technique allows rapid, highly sensitive and accurate characterization of strained silicon whose Raman signal would usually be overshadowed by the underlying bulk SiGe Raman spectra. The analysis was performed on strained silicon samples of thickness 9, 17.5 and 42 nm using a 488 nm Ar+ micro‐Raman excitation source. The quantitative determination of strained‐silicon enhancement factors was also made. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The presence of native oxide on the surface of silicon nanoparticles is known to inhibit charge transport on the surfaces. Scanning electron microscopy (SEM) studies reveal that the particles in the printed silicon network have a wide range of sizes and shapes. High‐resolution transmission electron microscopy reveals that the particle surfaces have mainly the (111)‐ and (100)‐oriented planes which stabilizes against further oxidation of the particles. X‐ray absorption spectroscopy (XANES) and X‐ray photoelectron spectroscopy (XPS) measurements at the O 1s‐edge have been utilized to study the oxidation and local atomic structure of printed layers of silicon nanoparticles which were milled for different times. XANES results reveal the presence of the +4 (SiO2) oxidation state which tends towards the +2 (SiO) state for higher milling times. Si 2p XPS results indicate that the surfaces of the silicon nanoparticles in the printed layers are only partially oxidized and that all three sub‐oxide, +1 (Si2O), +2 (SiO) and +3 (Si2O3), states are present. The analysis of the change in the sub‐oxide peaks of the silicon nanoparticles shows the dominance of the +4 state only for lower milling times.  相似文献   

18.
CdWO4 crystals grown by the Czochralski method at the low-temperature gradient were investigated with electron spin resonance (ESR) spectroscopy. ESR spectra did not contain the spectra of impurity ions typical for the CdWO4 structure, i.e., Fe3+, Mn2+, and Cr3+. At the same time, in the studied crystals a complex ESR spectrum having the hyperfine structure due to two nonequivalent tungsten atoms was observed (W183;I=1/2; natural abundance, 14.28%). Angular dependence analysis and simulation of ESR spectra have shown that this novel spectrum is described by a spin-Hamiltonian with the following parameters:D=839 G,E=80 G,g xx=2.01,g yy=1.97,g zz=1.987 and electron spinS=7/2. There is one magnetically nonequivalent position of the center in the crystal structure and the direction ofD zz andg zz corresponds to the direction of Wn-Wn+2 (or Cdn-Cdn+2) in the crystal structure. Because of the fact that it is in principle impossible to achieve the electron stateS=7/2 for the d-shell of one transition metal ion and taking into account the fact that such electron state is realized for two nonequivalent tungsten atoms, we suppose the defect structure to be the chain W2+-M+-W3+. In the structure of this defect the ion M+ is diamagnetic, the ions W2+ and W3+ have electron spinS=2 andS=3/2, respectively. The necessary condition for such defect to exist is to place this chain of ions in cadmium positions for the charge compensation. the reason for such defects to form is supposed to be the incorporation of M+ ions into the CdWO4 lattice. The presence of W2+ and W3+ in Cd positions in the defect structure provides the charge compensation and the lowering of the lattice stress.  相似文献   

19.
Aluminum-doped p-type polycrystalline silicon thin films have been synthesized on glass substrates using an aluminum target in a reactive SiH4+Ar+H2 gas mixture at a low substrate temperature of 300 °C through inductively coupled plasma-assisted RF magnetron sputtering. In this process, it is possible to simultaneously co-deposit Si–Al in one layer for crystallization of amorphous silicon, in contrast to the conventional techniques where alternating metal and amorphous Si layers are deposited. The effect of aluminum target power on the structural and electrical properties of polycrystalline Si films is analyzed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and Hall-effect analysis. It is shown that at an aluminum target power of 100 W, the polycrystalline Si film features a high crystalline fraction of 91%, a vertically aligned columnar structure, a sheet resistance of 20.2 kΩ/ and a hole concentration of 6.3×1018 cm−3. The underlying mechanism for achieving the semiconductor-quality polycrystalline silicon thin films at a low substrate temperature of 300 °C is proposed.  相似文献   

20.
Low refractive index polymer materials have been investigated with a view to form the back surface mirror of advanced silicon solar cells. SiOx:H or AlOy SiOx:H polymer films were spun on top of an ultra‐thin (<10 nm) atomic‐layer‐deposited (ALD) Al2O3 layer, itself deposited on low‐resistivity (1 Ω cm) p‐type crystalline silicon wafers. These double‐layer stacks were compared to both ALD Al2O3 single layers and ALD Al2O3/plasma‐enhanced chemical vapour deposited (PECVD) SiNx stacks, in terms of surface passivation, firing stability and rear‐side reflection. Very low surface recombination velocity (SRV) values approaching 3 cm/s were achieved with ALD Al2O3 layers in the 4–8 nm range. Whilst the surface passivation of the single ALD Al2O3 layer is maintained after a standard firing step typical of screen printing metallisation, a harsher firing regime revealed an enhanced thermal stability of the ALD Al2O3/SiOx:H and ALD Al2O3/AlOy SiOx:H stacks. Using simple two‐dimensional optical modelling of rear‐side reflection it is shown that the low refractive index exhibited by SiOx:H and AlOy SiOx:H results in superior optical performance as compared to PECVD SiNx, with gains in photogenerated current of ~0.125 mA/cm2 at a capping thickness of 100 nm. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号