共查询到20条相似文献,搜索用时 0 毫秒
1.
A simple approach is proposed for the synthesis of cobalt hexacyanoferrate nanoparticles (CoNPs) with uniform shape and size
controlled by ethylene diamine tetraacetic acid (EDTA) as a stabilizer. A sensitive amperometric biosensor for insulin has
been prepared using glassy carbon electrodes by solubilization of carbon nanotubes (CNTs) in chitosan (CHIT) together with
CoNPs synthesized by the new methodology. The CoNP-CNT-CHIT organic–inorganic system exerts a synergistic effect, resulting
in the remarkably enhanced insulin currents owing to the superior electron-transfer ability of CNTs and the excellent reversible
redox centers of CoNPs. High-resolution transmission electron microscopy (HRTEM) was used to provide closer inspection of
the CoNPs. The effects of alkali metal cations and the concentrations of CNTs and CoNPs on the voltammetric behavior of the
film-modified electrode were also investigated. In pH 6.98 phosphate buffer (PB) at +0.7 V (vs. SCE) the insulin biosensor
exhibits a linear response range of 0.1–3 μM with a correlation coefficient of 0.98, and the detection limit (S/N=3) is determined
to be 40 nM, the stability of the biosensor was tested and found satisfactory. There is great promise for in vivo measurements
of this important hormone. 相似文献
2.
A silver hexacyanoferrate nanoparticles/carbon nanotubes modified glassy carbon electrode was fabricated and then successfully used for the simultaneous determination of ascorbic acid, dopamine and uric acid by cyclic voltammetry. A detailed investigation by transmission electron microscopy (TEM) and electrochemistry was performed in order to elucidate the preparation process and properties of the nanocomposites. The size of silver hexacyanoferrate nanoparticles was examined by TEM around 27 nm. Linear calibration plots were obtained over the range of 4.0 × 10−6-7.8 × 10−5, 2.4 × 10−6-1.3 × 10−4 and 2.0 × 10−6-1.5 × 10−4 mol L−1 with detection limits of 4.2 × 10−7,1.4 × 10−7 and 6.0 × 10−8 mol L−1 for ascorbic acid, dopamine and uric acid, respectively. The practical analytical utilities of the modified electrode were demonstrated by the determination of ascorbic acid, dopamine and uric acid in urine and human blood serum samples. 相似文献
3.
The anticancer drug, leuprolide (LPR) bound to double-stranded fish sperm DNA (dsDNA) which was immobilized onto the surface of an anodically activated pencil graphite electrode (PGE), was employed for designing a sensitive biosensor. The interaction of leuprolide (LPR) with double-stranded DNA (dsDNA) immobilized onto pencil graphite electrode (PGE) have been studied by electrochemical methods. The mechanism of the interaction was investigated and confirmed by differential pulse voltammetry using two different interaction methods; at the PGE surface and in the solution phase. The decrease in the guanine oxidation peak current was used as an indicator for the interaction in acetate buffer at pH 4.80. The response was optimized with respect to accumulation time, potential, drug concentration, and reproducibility for both interaction methods. The linear response was obtained in the range of 0.20-6.00 ppm LPR concentration with a detection limit of 0.06 ppm on DNA modified PGE and between 0.20 and 1.00 ppm concentration range with detection limit of 0.04 ppm for interaction in solution phase method. LPR showed an irreversible oxidation behavior at all investigated pH values on a bare PGE. Differential pulse adsorptive stripping (AdSDPV) voltammetric method was developed for the determination of LPR. Under these conditions, the current showed a linear dependence with concentration within a range of 0.005-0.20 ppm with a detection limit of 0.0014 ppm. Each determination method was fully validated and applied for the analysis of LPR in its pharmaceutical dosage form. 相似文献
4.
Thulium hexacyanoferrate (TmHCF) nanoparticles (NPs) were in situ synthesized within the chitosan film on the electrode surface by a biocatalyzed reaction. The properties of the obtained nanoparticles are characterized with scanning electron microscope (SEM) and energy-dispersive X-ray (EDX). The optimized conditions for the formation of TmHCF NPs were 16 mM Fe(CN)63− and 1.5 mM Tm3+ with an accumulation time of 20 min. Based on process of in situ synthesis of TmHCF NPs, a novel biosensor for glucose was designed, and there is a linear relationship between the current response of TmHCF NPs and glucose concentration. The linear range for glucose detection was 0.02–0.4 mM (r = 0.9975, n = 5) and 0.4–13.6 mM (r = 0.9935, n = 10) and the detection limit was 6 μM at a signal-to-noise ratio of 3. 相似文献
5.
In this paper, for the first time, Cu nanoparticles (CuNPs) were prepared by seed-mediated growth method with Au nanoparticles (AuNPs) playing the role of seeds. Carbon nanotubes (CNTs) and AuNPs were first dropped on the surface of glassy carbon (GC) electrode, and then the electrode was immersed into growth solution that contained CuSO4 and hydrazine. CuNPs were successfully grown on the surface of the CNTs. The modified electrode showed a very high electrochemical activity for electrocatalytic oxidation of glucose in alkaline medium, which was utilized as the basis of the fabrication of a nonenzymatic biosensor for electrochemical detection of glucose. The biosensor can be applied to the quantification of glucose with a linear range covering from 1.0 × 10−7 to 5 × 10−3 M and a low detection limit of 3 × 10−8 M. Furthermore, the experiment results also showed that the biosensor exhibited good reproducibility and long-term stability, as well as high selectivity with no interference from other oxidable species. 相似文献
6.
Joonwon Bae 《Journal of solid state chemistry》2011,184(7):1749-1755
Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT@C) have been fabricated by a surfactant mediated sol-gel method followed by a carbonization process. Silicon nanoparticles-carbon nanotubes (Si-CNT) nanohybrids were produced by a wet-type beadsmill method. To obtain Si-CNT nanocomposites with spherical morphologies, a silica precursor (tetraethylorthosilicate, TEOS) and polymer (PMMA) mixture was employed as a structure-directing medium. Thus the Si-CNT/Silica-Polymer microspheres were prepared by an acid catalyzed sol-gel method. Then a carbon precursor such as polypyrrole (PPy) was incorporated onto the surfaces of pre-existing Si-CNT/silica-polymer to generate Si-CNT/Silica-Polymer@PPy microspheres. Subsequent thermal treatment of the precursor followed by wet etching of silica produced Si-CNT@C microcapsules. The intermediate silica/polymer must disappear during the carbonization and etching process resulting in the formation of an internal free space. The carbon precursor polymer should transform to carbon shell to encapsulate remaining Si-CNT nanocomposites. Therefore, hollow carbon microcapsules containing Si-CNT nanocomposites could be obtained (Si-CNT@C). The successful fabrication was confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These final materials were employed for anode performance improvement in lithium ion battery. The cyclic performances of these Si-CNT@C microcapsules were measured with a lithium battery half cell tests. 相似文献
7.
A new glucose amperometric biosensor, based on electrodeposition of platinum nanoparticles onto the surface of multi-wall carbon nanotube (MWNT)-polyaniline (PANI) nanocomposites, and then immobilizing glucose oxidase (GOD) with covalent interaction and adsorption effect, was constructed in this paper. Firstly, the MWNT-PANI nanocomposites had been synthesized by in situ polymerization and were characterized through transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, and ultraviolet and visible (UV-vis) absorption spectra. The assembled process of the modified electrode was probed by scanning electron microscopy (SEM) and cyclic voltammetry (CV). Chronoamperometry was used to study the electrochemical performance of the resulting biosensor. The glucose biosensor exhibited a linear calibration curve over the range from 3.0 μM to 8.2 mM, with a detection limit of 1.0 μM and a high sensitivity of 16.1 μA mM−1. The biosensor also showed a short response time (within 5 s). Furthermore, the reproducibility, stability and interferences of the biosensor were also investigated. 相似文献
8.
《印度化学会志》2021,98(11):100179
The Cobalt (Co) transition element in the recent years have been a new research area with increased trends in inorganic chemistry. The Co is used in several areas for example ceramics, technologies, additive manufacturing, rechargeable batteries in manufacturing firms. The magnets, and alloys, digital processing, bio-essentiality, Healthcare computing, sustainable development, storage of renewable energy, biogas amongst others are entailed. In this study, the Co Metallurgical processes are presented and how they are used. This is because of its low resistance in smaller geometries and capacity to work through a thinner barrier. This paper avails the purification process of Co from its ores. Presented a diagrammatic illustration of Co within an adverse aspect. This in return avails all fundamental research content that can facilitate the researchers in opposing models and frame works that are state-of-art in elements purification processes. 相似文献
9.
A simple method for fabrication of sole composition nickel hexacyanoferrate modified electrode and its application 总被引:1,自引:0,他引:1
Nickel hexacyanoferrate film modified gold electrode was prepared by a simple chemical deposition procedure from a fresh prepared solution containing ferricyanide, Ni2+, and sodium nitrate. The resultant films have solo composition and are significantly stable as compared to the electrochemically deposited NiHCF films. For different concentrations of Na+ in the solution, the formal potential values of NiHCF shift according to the Nernstian behavior with a slope of 48 mV in the range of 10−4 to 1.0 M. The NiHCF film was also used for the electrocatalytic oxidation of ascorbic acid. The anodic peak current observed in cyclic voltammetry increased with the ascorbic acid concentration. At a fixed potential under hydrodynamic conditions, the calibration plot was linear over the ascorbic acid concentration range 0.1-12 mM. 相似文献
10.
《Electroanalysis》2018,30(3):497-508
Modification of cellulosic paper with carbon nanotubes (CNT) was studied for the development of electronic and analytical devices. Interesting results were published by using a CNT aqueous solution and the capillary forces of filter paper to make conductive tracks, supercapacitors, potentiometric electrodes and chemometric sensors. In this report, we show for the first time an electrochemical characterization of CNT‐CS‐SDS paper electrodes constructed with an ink containing optimized proportions of multi‐wall CNT, chitosan (CS) and sodium dodecyl sulfate (SDS), and we compared our data with CNT‐SDS paper electrodes constructed with a previously reported ink. We achieved better reversibility (ΔE=131±14 mV, CVs) and reproducibility (RSD=3.63 %) with CNT‐CS‐SDS paper electrodes, when compared to CNT‐SDS paper electrodes (ΔE=249±7 mV; RSD=6.8 %) used as controls. When electrodes were fold at 90° angle, CNT‐CS‐SDS paper electrodes showed lower RSD than CNT‐SDS paper electrodes, 8.43 % and 21.5 % respectively. These results are in concordance with SEM analysis indicating a dense CS film in CNT‐CS‐SDS paper electrodes. As a proof of concept, we determine dopamine concentration by DPV in the presence of ascorbic and uric acids, the limit of detection calculated was 6.32 μM. Moreover, a bismuth‐film was prepared by in situ plating of Bi into CNT‐CS‐SDS paper electrodes. ASV allowed us to detect Pb in the presence of Bi (10–200 ppb) with a limit of detection of 6.74 ppb. 相似文献
11.
The electroless sol-gel technique was used for the construction of nickel hexacyanoferrat (NiHCF) modified carbon composite electrodes (CCEs).This involves two steps: formation of a carbon ceramic electrode fabricated by nickel powder and then immersing the electrode into a sodium- hexacyanoferate solution for the immobilization of NiHCF films. The cyclic voltammety of the resulting modified CCEs prepared under optimum conditions, shows a well defined surface redox couple due to the [NiIIFeIII/II(CN)6]−2/−1 system. The effect of different alkali metal cations in supporting electrolyte on the behavior of the modified electrode were studied. The charge transfer coefficient (α) and charge transfer rate constant (ks) for modified films were calculated. Hydrazine and hydroxylamine have been chosen as a model to elucidate the electocatalytic ability and analytical parameters of NiHCF modified CCE prepared by one and two-step sol-gel techniques and these compounds determined amperometically at the surface of modified electrodes. The latter shows a good electocatalytic activity towards the oxidation of hydrazine and hydroxylamine in the pH range 3-8 in comparison with CCEs modified by homogeneous mixture of graphite powder, Ni(NO3)2 and Na2[Fe(CN)6], (one-step sol-gel technique). Furthermore, the catalytic rate constant, linear dynamic range, limit of detection, and sensitivity for hydrazine and hydroxylamine detections were evaluated and compared with CCEs prepared with one-step sol-gel method. The modified CCEs containing NiHCF shows good repeatability, short response time, t 90%<3 s, long term stability (3 months) and excellent catalytic activity. Furthermore, the method of preparation is rapid and simple and the modified electrodes are renewed by simple mechanical polishing and immersing in [Na3Fe(CN]6] solution. 相似文献
12.
Hepatitis B virus (HBV) can cause viral infection that attacks the liver and it is a major global health problem that put people at a high risk of death from cirrhosis of the liver and liver cancer. HBV has infected one third of the worldwide population, and 350 million people suffer from chronic HBV infection. For these reasons, development of an accurate, sensitive and expedient detection method for diagnosing, monitoring and assessing therapeutic response of HBV is very necessary and urgent for public health and disease control. Here we report a new strategy for detection of viral load quantitation of HBV based on colorimetric polymerase chain reaction (PCR) with DNAzyme-containing probe. The special DNAzyme adopting a G-quadruplex structure exhibited peroxidase-like activity in the presence of hemin to report colorimetric signal. This method has shown a broad range of linearity and high sensitivity. This study builds important foundation to achieve the specific and accurate detection level of HBV DNA with a low-cost and effective method in helping diagnosing, preventing and protecting human health form HBV generally all over the world and especially in developing countries. 相似文献
13.
Limin Lu Li Zhang Xiaobing Zhang Shuangyan Huan Guoli Shen Ruqin Yu 《Analytica chimica acta》2010,665(2):146-262
A novel tyrosinase biosensor based on hydroxyapatite nanoparticles (nano-HA)-chitosan nanocomposite has been developed for the detection of phenolic compounds. The uniform and size controlled nano-HA was synthesized by hydrothermal method, and its morphological characterization was examined by transmission electron microscope (TEM). Tyrosinase was then immobilized on a nano-HA-chitosan nanocomposite-modified gold electrode. Electrochemical impedance spectroscopy and cyclic voltammetry were used to characterize the sensing film. The prepared biosensor was applied to determine phenolic compounds by monitoring the reduction signal of the biocatalytically produced quinone species at −0.2 V (vs. saturated calomel electrode). The effects of the pH, temperature and applied potential on the biosensor performance were investigated, and experimental conditions were optimized. The biosensor exhibited a linear response to catechol over a wide concentration range from 10 nM to 7 μM, with a high sensitivity of 2.11 × 103 μA mM−1 cm−2, and a limit of detection down to 5 nM (based on S/N = 3). The apparent Michaelis-Menten constants of the enzyme electrode were estimated to be 3.16, 1.31 and 3.52 μM for catechol, phenol and m-cresol, respectively. Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results. 相似文献
14.
An enhanced amperometric biosensor based on incorporating one kind of unique nanobiocomposite as dopant within an electropolymerized polypyrrole film has been investigated. The nanobiocomposite was synthesized by self-assembling glutamate dehydrogenase (GLDH) and poly(amidoamine) dendrimer-encapsulated platinum nanoparticles (Pt-DENs) onto multiwall carbon nanotubes (CNTs). ζ-Potentials and high-resolution transmission electron microscopy (HRTEM) confirmed the uniform growth of the layer-by-layer nanostructures onto the carboxyl-functionalized CNTs. The size of Pt nanoparticles is approximately 3 nm. The (GLDH/Pt-DENs)n/CNTs/Ppy hybrid film was obtained by electropolymerization of pyrrole onto glassy carbon electrodes and characterized with scanning electron microscopy (SEM), cyclic voltammetry (CV) and other electrochemical measurements. All methods indicated that the (GLDH/Pt-DENs)n/CNTs nanobiocomposites were entrapped within the porous polypyrrole film and resulted in a hybrid film that showed a high electrocatalytic ability toward the oxidation of glutamate at a potential 0.2 V versus Ag/AgCl. The biosensor shows performance characteristics with high sensitivity (51.48 μA mM−1), rapid response (within 3 s), low detection limit (about 10 nM), low level of interference and excellent reproducibility and stability. 相似文献
15.
Mehdi Baghayeri Reza Ansari Marzieh Nodehi Hojat Veisi 《International journal of environmental analytical chemistry》2018,98(9):874-888
In this article, a highly sensitive electrochemical sensor is introduced for direct electro-oxidation of bisphenol A (BPA). The novel nanocomposite was prepared based on multi-walled carbon nanotube/thiol functionalised magnetic nanoparticles (Fe3O4-SH) as an immobilisation platform and gold nanoparticles (AuNPs) as an amplifying electrochemical signal. The chemisorbed AuNPs exhibited excellent electrochemical activity for the detection of BPA. Some analysing techniques such as Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and energy-dispersive x-ray diffraction exposed the formation of nanocomposite. Under optimum conditions (pH 9), the sensor showed a linear range between 0.002–240 μM, with high sensitivity (0.25 μA μM?1) along with low detection limit (6.73 × 10?10 M). Moreover, nanocomposites could efficiently decrease the effect of interfering agents and remarkably enhance the utility of sensor at detection of BPA in some real samples. 相似文献
16.
Mohammad Mazloum-Ardakani Mohammad Ali Sheikh-Mohseni Bibi-Fatemeh Mirjalili Roya Ahmadi Mohammad Ali Mirhoseini 《催化学报》2015,(8):1273-1279
在金纳米粒子(AuNPs)上经苯硫酚衍生物(3,4二羟基苯基-偶氮-苯硫酚, DAT)自组装制得了一种新型纳米复合物,用于修饰玻璃碳电极(GCE/AuNP-DAT).采用循环伏安法研究了该新型电极的性质,并将其用作异丙肾上腺素(IP)电催化剂,考察了该纳米复合物的电催化活性,从而得到反应机理和催化反应速率常数.由于GCE/AuNP-DAT电极对尿酸氧化没有电催化活性,因此可将IP的氧化信号从该改进电极中分离出来,从而排除了尿酸对IP测定的干扰.该电极可作为传感器,当用于差动脉冲伏安法测定IP时,线性动态范围为1.0–1500.0μmol/L,检测极限为0.46μmol/L. 相似文献
17.
Multi-walled carbon nanotubes (MWCNTs) functionalized by cobalt nanoparticles were obtained using a single step chemical deposition method in an ultrasonic bath. The composite material was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The electroactivity of the cobalt-functionalized MWCNTs was assessed in respect to the electrooxidation of paracetamol (PAR) and dopamine (DA). It was found that the carbon nanotube supported cobalt nanoparticles have significantly higher catalytic properties. The proposed electrode has been applied for the simultaneous determination of PAR and DA. The modified electrode could resolve the overlapped voltammetric waves of PAR and DA into two well-defined voltammetric peaks with peak to peak separation of about 203 mV. On the other hand, the presence of potential drug interfering compounds AA and UA did not affect the voltammetric responses of PAR and DA. The current of oxidation peaks showed a linear dependent on the concentrations of PAR and DA in the range of 5.2 × 10−9–4.5 × 10−7 M (R2 = 0.9987) and 5.0 × 10−8–3.0 × 10−6 M (R2 = 0.9999), respectively. The detection limits of 1.0 × 10−9 M and 1.5 × 10−8 M were obtained for PAR and DA, respectively. The proposed electrode showed good stability (peak current change: 4.9% with and RSD of 2.6% for PAR; 5.5% with and RSD of 3.0% for DA over 3 weeks), reproducibility (RSD 2.3% for PAR and RSD 1.5% for DA), repeatability (RSD 2.25% for PAR and RSD 2.50% for DA) and high recovery (99.7% with an RSD of 1.3% for PAR; 100.8% with an RSD of 1.8% for DA). The proposed method was successfully applied to the determination of PAR and DA in pharmaceuticals. 相似文献
18.
A novel electrochemical sensor based on nano-structured film electrode for monitoring nitric oxide in living tissues 总被引:1,自引:0,他引:1
Xiaocui Deng 《Talanta》2010,82(4):1218-265
A sensor exhibited high sensitivity and good selectivity for determination of nitric oxide (NO) was fabricated. The sensor was constructured by coating Nafion/multi-walled carbon nanoubes-chitosan-gold nanoparticles (Nafion/MWNTs-CS-AuNPs) film on glassy carbon electrode (GCE). Several key parameters affecting on the electrochemical response were optimized, such as the film thickness, applied potential and volume of Nafion. The sensor showed good linear relationship with the NO concentration in the range of 1.90 × 10−8 to 5.40 × 10−5 M and with the detection limit of 7.60 × 10−9 M (S/N = 3). Finally, the sensor was successfully applied to the monitoring of NO release from living tissues, including mouse kidney, heart, spleen and liver (a slice). NO release at micro-molar level can be detected while the NO donor l-arginine (l-Arg), nitroglycerin (GTN) and aspirin (ASA) was present. It was interestedly found that the capacities to induce NO generation were in the order of GTN > ASA > l-Arg when these stimulants were converted to the same concentration. In addition, the NO release is associated with the functional groups in these donors. 相似文献
19.
In the presented research, a novel, ultra sensitive biosensor for the impedimetric detection of vascular endothelial growth factor (VEGF) is introduced. The human vascular endothelial growth factor receptor 1 (VEGF-R1, Flt-1) was used as a biorecognition element for the first time. The immobilization of VEGF-R1 on glassy carbon electrodes was carried out using layer-by-layer covalent attachment of VEGF-R1. The electrochemical properties of the layers constructed on the electrodes were characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The differences in electron transfer resistance (Ret) between the working solution and the biosensor surface, recorded by the redox probe K3[Fe(CN)6]/K4[Fe(CN)6], confirmed the binding of VEGF to VEGF-R1. The new biosensor allowed a detection limit of 100 fg mL−1 with a linear range of 100–600 fg mL−1 to be obtained. The biosensor also exhibited good repeatability (with a correlation coefficient of 1.95%), and reproducibility. 相似文献
20.
以碳纳米管为模板合成的带有介孔和微孔的ZSM-5分子筛具有不同的复合结构。用三氯乙酸(TCA)可选择性地将中孔的铝脱除。基于TCA分子大小,它可能只扩散到中孔中,因而使得微孔部分不脱铝。从分子筛结构中脱除铝原子导致催化剂中出现中空的空间。若将硅原子填充到空位中,那么介孔部分的结构会变得与硅酸盐类似,不具有催化性能。本文使用含硅的溶液来填充空位,将硅原子直接取代中孔结构中的铝原子。通过此特殊方法改变微孔和介孔的几何形状和性质,从而使改性HZSM-5上的积碳量从14%降低至3%。 相似文献