首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A selective, sensitive, and accurate high-performance liquid chromatographic method for determination of diltiazem in plasma samples has been developed and validated. The effects of mobile phase composition, buffer concentration, mobile phase pH, and concentration of organic modifiers on retention of diltiazem and internal standard were investigated. Solid-phase and liquid–liquid extraction were examined and proposed for isolation of the drug and elimination of endogenous plasma interferences. A 5 m Lichrocart Lichrospher 60 RP-select B chromatographic column was used; the mobile phase was acetonitrile–0.025 mol L–1 KH2PO4 (pH 5.5), 35:65 ( v / v) at a flow-rate of 1.5 mL min–1. The detection wavelength was 215 nm. The calibration plots were linear in the concentration range 20.0–500.0 ng mL–1. The method has been implemented to monitor diltiazem levels in patient samples.  相似文献   

2.
Penindolone (PND) is a novel influenza A virus dual inhibitor that blocks hemagglutinin-mediated adsorption and membrane fusion. A sensitive and specific ultra-performance liquid chromatography–tandem mass spectrometry method was developed and validated to determine PND in rat plasma. Plasma sample preparation was a simple deproteinization with acetonitrile followed by centrifugation. Chromatographic separation was performed on a C18 column with a gradient mobile phase of acetonitrile–water containing 0.1% formic acid. Detection was carried out by electrospray ionization in negative ion multiple reaction monitoring mode. Linear detection responses were obtained for PND ranging from 1 to 1,000 ng/ml. The intra- and inter-day precision (relative standard deviations, RSD) were within 6.5%, and accuracy (relative error, RE) was within ±11.0%. The extraction recovery data for PND and internal standard (IS) were >96.0%. PND was proved to be stable during the sample storage, preparation and analytic procedures. The validated method was successfully applied to pharmacokinetic and bioavailability studies for PND in rats. The results showed the existence of twin peaks, gender difference and nonlinear pharmacokinetics for PND. In addition, two oxidation metabolites and three glucuronidation metabolites of PND were detected by ultra-high-performance liquid chromatography–high resolution mass spectrometry.  相似文献   

3.
A fast liquid chromatographic separation, coupled with sensitive and straightforward detection using a boron-doped diamond (BDD) electrode, was developed and validated for the determination of α-lipoic acid in dietary supplement samples. The analysis was carried out using a reversed phase C18 (150 mm × 4.6 mm, 5 μm) column with a mobile phase consisting of a 1:1 (v/v) ratio of 0.05 M phosphate solution (pH 2.5):acetonitrile, at a flow rate of 1.0 mL/min. The detection potential obtained from hydrodynamic voltammetry was 1.05 V vs. Ag/AgCl. Under optimized conditions, the chromatographic separation was performed in less than 5 min, a good linear relationship was obtained between the current and the α-lipoic concentration within the range of 0.01-60 μg/mL (correlation coefficient of 0.9971), and a detection limit of 3.0 ng/mL was determined. Furthermore, this method was successfully applied to determine α-lipoic acid concentrations in selected commercial dietary supplement samples. The recovery of α-lipoic acid in spiked samples at 0.5, 5.0 and 30 μg/mL ranged from 94.4% to 103.6% with a relative standard deviation (RSD) of between 1.2% and 3.7%. In real samples, this developed methodology produced results that were highly correlated with the standard HPLC-UV approach. Therefore, the present method can be used for fast, selective and sensitive quantification of α-lipoic acid in dietary supplements.  相似文献   

4.
The detection of the markers of Cannabis consumption in biological specimens is an important task for drug testing laboratories in varous contexts. A simple assay combining salting-out assisted liquid–liquid extraction sample preparation and LC–MS/MS analysis was applied to the measurement of Δ9-tetrahydrocannabinol, 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH), 11-hydroxy-Δ9-tetrahydrocannabinol, cannabinol and cannabidiol concentrations in 100 μl plasma specimens. The assay had linearity of 1–100 ng ml−1 for THC-COOH and 0.5–50 ng ml−1 for the other tested cannabinoids. Assay validation criteria were fulfilled. Extraction yields (88.7–97.3%) and internal-standard correct matrix effects (−9.6 to +5.4%) were acceptable. The assay was applied to 238 clinical specimens from trauma patients, with 19 samples presenting quantifiable concentrations of at least one of the target compounds. The developed assay is a simple and efficient strategy for simultaneous measurement of Δ9-tetrahydrocannabinol, THC-COOH, 11-hydroxy-Δ9-tetrahydrocannabinol, cannabinol and cannabidiol concentrations in plasma specimens.  相似文献   

5.
The paper reported a reliable analytical method for simultaneous determination of ochratoxin A (OTA) and ochratoxin B (OTB) in traditional Chinese medicines (TCMs) by ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS). The development of the method and investigations on the matrix influence were described in particular. The matrix effects were thereby minimized by using a reliable internal standard and a simple sample pretreatment. The established method was further validated by determining the linearity (R2 ≥ 0.9990), average recovery (86.3–114.2%), sensitivity (limit of quantitation 0.03–0.19 ng mL−1) and precision (relative standard deviation ≤ 13.1%). It was shown to be a suitable method for simultaneous determination of OTA and OTB in various TCMs. Finally, a total of 51 TCMs widely used in China were screened for OTA and OTB with the proposed method. The results showed that only 4 samples were contaminated with ochratoxins at low levels, indicating that it was low risk of ochratoxins to consumers who occasionally used TCMs.  相似文献   

6.
Histamine, a neurotransmitter crucially involved in a number of basic physiological functions, undergoes changes in neuropsychiatric disorders. Detection of histamine in biological samples such as cerebrospinal fluid (CSF) is thus of clinical importance. The most commonly used method for measuring histamine levels is high performance liquid chromatography (HPLC). However, factors such as very low levels of histamine, the even lower CSF-histamine and CSF-histamine metabolite levels, especially in certain neuropsychiatric diseases, rapid formation of histamine metabolites, and other confounding elements during sample collection, make analysis of CSF-histamine and CSF-histamine metabolites a challenging task. Nonetheless, this challenge can be met, not only with respect to HPLC separation column, derivative reagent, and detector, but also in terms of optimizing the CSF sample collection. This review aims to provide a general insight into the quantitative analyses of histamine in biological samples, with an emphasis on HPLC instruments, methods, and hyphenated techniques, with the aim of promoting the development of an optimal and practical protocol for the determination of CSF-histamine and/or CSF-histamine metabolites.  相似文献   

7.
Cinnarizine is a weak base, which can produce supersaturation and precipitation during gastrointestinal transit, affecting its absorption in vivo. Therefore, it is necessary to investigate whether the oral bioavailability of cinnarizine can be improved after co-administration with precipitation inhibitors or not. In order to evaluate the pharmacokinetic behavior of cinnarizine in rats, a simple, rapid, sensitive, and environmentally friendly supercritical fluid chromatography-tandem mass spectrometric method was established and validated. In this method, flunarizine, a structural analogue of cinnarizine, was selected as the internal standard, and cinnarizine was extracted from rat plasma using evaporation-free liquid–liquid extraction method. The analytes were separated on a Torus 1-AA column (3.0 mm × 100 mm, 1.7 μm) within 2.0 min, using a gradient elution procedure. The transitions of cinnarizine and flunarizine were m/z 369.1 → 167.1 and m/z 405.1 → 203.1, respectively. Cinnarizine showed good linear correlation in the range of 1–500 ng/ml with a lower limit of quantification of 1 ng/ml. The intra- and interday precision and accuracy of all quality control samples were within ±15%. This high-throughput, accurate, sensitive, and reproducible method has been successfully applied to study the effects of the precipitation inhibitor cinnarizine on the pharmacokinetics in rats.  相似文献   

8.
An automated procedure for sample work-up and preparation of calibration standards for HPLC analyses is presented. The equipment consisting of a benchtop workstation and a conventional HPLC system was used to analyze aqueous solutions containing Iotetrol, a contrast medium. The four rotamers of the test compound were separated using the stationary phase Hypercarb S and by elution with tetrahydro-furan/water 3:97 (w/w). The analytical procedure was characterized with respect to sensitivity, selectivity, linearity of the detector response, accuracy, precision and carry-over effect. The use of the workstation yielded excellent data with respect to accuracy (102%) and precision (1%). At the stage of method development, the influence of post-column photoderivatization on the detectability of the analyte was investigated. As a result, a bathochromic shift of the UV absorbance maximum and the considerable intensification of the rudimentary fluorescence properties of the Iotetrol molecule were observed. The automatization saved a considerable amount of man-hours (ca. 25%).  相似文献   

9.
Anatoxin-a is a potent alkaloid neurotoxin produced by a number of cyanobacterial species and released in freshwaters during cyanobacterial blooms. Its high toxicity is responsible for several incidents of lethal intoxications of birds and mammals around the world; therefore anatoxin-a has to be regarded as a health risk and its concentration in lakes and water reservoirs should be monitored. Phenylalanine is a natural amino acid, also present in freshwaters, isobaric to anatoxin-a, with a very similar fragmentation pattern and LC retention. Since misidentification of phenylalanine as anatoxin-a has been reported in forensic investigations, special care must be taken in order to selectively determine traces of anatoxin-a in the presence of naturally occurring phenylalanine. A fast LC tandem MS method was developed by using a 1.8 μm 50 × 2.1 mm C18 column for the separation of anatoxin-a and phenylalanine, achieving a 3-min analysis time. Isotopically labelled phenylalanine-d 5 was employed as internal standard to compensate for electrospray ion suppression and sample preconcentration losses. Both compounds were preconcentrated 1,000-fold on a porous graphitic carbon solid-phase extraction (SPE) cartridge after adjustment of sample pH to 10.5. The method was validated by using lake water spiked at four different levels from 0.01 to 1 μg L−1. Anatoxin-a recovery ranged from 73 to 97%, intra-day precision (RSD%) ranged from 4.2 to 5.9, while inter-day precision (RSD%) ranged from 4.2 to 9.1%. Limits of detection and quantification were 0.65 and 1.96 ng L−1 respectively. The method was successfully applied for the detection of anatoxin-a in Greek lakes at concentrations ranging from less than 0.6 to 9.1 ng L−1.  相似文献   

10.
The nano-LC technique is increasingly used for both fast studies on enantiomeric analysis and test beds of novel stationary phases due to the small volumes involved and the short conditioning and analysis times. In this study, the enantioseparation of 10 drugs from different families was carried out by nano-LC, utilizing silica with immobilized amylose tris(3-chloro-5-methylphenylcarbamate) column. The effect on chiral separation caused by the addition of different salts to the mobile phase was evaluated. To simultaneously separate as many enantiomers as possible, the effect of buffer concentration in the mobile phase was studied, and, to increase the sensitivity, a liquid–liquid microextraction based on the use of isoamyl acetate as sustainable extraction solvent was applied to pre-concentrate four chiral drugs from tap and environmental waters, achieving satisfactory recoveries (>70%).  相似文献   

11.
Qi-Shen-Ke-Li (QSKL), a traditional Chinese formula prepared from six herbs, has long been used for the treatment of coronary heart disease and chronic heart failure. However, the herbal combination mechanism and underlying material basis of this multi-herbal formula are not clear. In this study, an ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method to simultaneously determine multiple bioactive compounds in QSKL was established and validated. Using the developed method, 18 bioactive components in rat plasma after oral administration of QSKL formula and its single herb extracts were quantified. Based on these results, pharmacokinetic (PK) parameters (T1/2, Tmax, Cmax, AUC0–48h, and AUC0–∞) of the 18 bioactive components were analyzed and compared using PKSlover 2.0 PK software. The experimental data suggested that significant changes in PK profiles were observed between the QSKL formula and its single-herb extracts. The herbal combination in QSKL significantly influences the system exposure and the PK behaviors of the 18 bioactive components, indicating multicomponent interactions among the herbs. This study provides insight into the herbal combination mechanism and underlying material basis of the QSKL formula.  相似文献   

12.
Quadrupole (Q) mass spectrometers are the most popular analytical tools due to their reliability, effectiveness, and low cost. However, they are not suitable for quantitative analysis of multi-component since the sensitivity will get worse rapidly with the increasing number of m/z detected. The present work, for the first time, attempted to analyze of 16 saponins simultaneously using an approach of segmental and selected ion monitoring (SSIM) based on LC–Q/MS, and systematically investigated the influence of different SSIM modes on signal level/noise level (S/N), lower limits of quantification (LLOQ), upper limits of quantification (ULOQs), etc. Our results showed that a proper SSIM mode could not only provide much higher sensitivity for all the targeting analytes, but also dramatically broadened their dynamic ranges. The developed methodology could effectively break the application bottleneck on the quantitative analysis of multi-component with LC–Q/MS, and would be applied widely in related fields for multi-component analysis, such as environmental monitoring, metabonomics, Chinese herbal medicine research.  相似文献   

13.
Iron present in hemolyzed plasma could cause the degradation of artemisinin by reductively cleaving the peroxide bridge of artemisinin during sample preparation, which is a significant technical challenge for artemisinin determination. In this paper, this issue was resolved by using sodium nitrite as methemoglobin-forming agent to oxidize hemoglobin to methemoglobin in the presence of acetic acid and prevent the degradation of artemisinin in hemolyzed plasma during the sample preparation procedure. Then, a high-performance liquid chromatography tandem high-resolution mass spectrometry method was developed and validated for the determination of artemisinin in normal and hemolyzed plasma. The linear range was validated over the concentration range of 5–500 ng ml−1. The matrix effect and stability were also evaluated. This robust and sensitive assay was successfully applied to a pharmacokinetic study in rats after an oral administration of Artemisia annua L. extract.  相似文献   

14.
A new and sensitive determination method was developed for bovine lactoferrin in dairy products including infant formulas based on the signature peptide by ultra high-performance liquid chromatography and triple-quadrupole tandem mass spectrometry under the multiple reaction monitoring mode. The simple pretreatment procedures included the addition of a winged peptide containing the isotope-labeled signature peptide as internal standard, followed by an enzymatic digestion with trypsin. The signature peptide was chosen and identified from the tryptic hydrolyzates of bovine lactoferrin by ultra high-performance liquid chromatography and quadrupole-time-of-flight tandem mass spectrometry based on sequence database search. Analytes were separated on an ACQUITY UPLC BEH 300 C18 column and monitored by MS/MS in seven minutes. Quantitative result bias due to matrix effect and tryptic efficiency was corrected through the use of synthetic isotope-labeled standards. The limit of detection and limit of quantification were 0.3 mg/100 g and 1.0 mg/100 g, respectively. Bovine lactoferrin within the concentration range of 10–1000 nmol L−1 showed a strong linear relationship with a linear correlation coefficient (r) of >0.998. The intra- and inter-day precision of the method were RSD < 6.5% and RSD < 7.1%, respectively. Excellent repeatability (RSD < 6.4%) substantially supported the application of this method for the determination of bovine lactoferrin in dairy samples. The present method was successfully validated and applied to determination of bovine lactoferrin in dairy products including infant formulas.  相似文献   

15.
Iodoalkenes, such as 2-iodo-bornene, 17-iodoandrost-16-ene, 3-methoxy-17-iodoestra-1,3,5(10),16-ene, 3β-hydroxy-20-iodopregna-5,20-diene and 3β-hydroxy-12-iodo-5α,25R-spirost-11-ene were aminocarbonylated with enantiomerically pure and racemic α-phenylethylamine as the N-nucleophile in the presence of palladium(0) catalysts. Monodentate and bidentate (chiral and achiral) phosphines were used as ligands in the catalytic system. All diastereoisomers of the corresponding carboxamides were characterised as pure stereoisomers using both α-phenylethylamine and iodoalkene in enantiomerically pure form. The diastereoisomers were obtained in moderate to high yields in a chemoselective reaction, i.e., carboxamides due to single carbon monoxide insertion were formed exclusively, with no double CO insertion leading to 2-ketocarboxamides. Diastereoselectivities of the aminocarbonylation were investigated using the N-nucleophile in racemic form by the systematic variation of the catalyst.  相似文献   

16.
The direct aldol reaction of an α-alkyl-α-oxo aldehyde was catalyzed by trifluoromethyl-substituted diarylprolinol 1 to afford a γ-oxo-β-hydroxy-α-substituted aldehyde in good yield with excellent anti-selectivity and excellent enantioselectivity.  相似文献   

17.
A simple, rapid and efficient method, ionic liquid based dispersive liquid–liquid microextraction (IL-DLLME), has been developed for the first time for the determination of 18 polycyclic aromatic hydrocarbons (PAHs) in water samples. The chemical affinity between the ionic liquid (1-octyl-3-methylimidazolium hexafluorophosphate) and the analytes permits the extraction of the PAHs from the sample matrix also allowing their preconcentration. Thus, this technique combines extraction and concentration of the analytes into one step and avoids using toxic chlorinated solvents. The factors affecting the extraction efficiency, such as the type and volume of ionic liquid, type and volume of disperser solvent, extraction time, dispersion stage, centrifuging time and ionic strength, were optimised. Analysis of extracts was performed by high performance liquid chromatography (HPLC) coupled with fluorescence detection (Flu). The optimised method exhibited a good precision level with relative standard deviation values between 1.2% and 5.7%. Quantification limits obtained for all of these considered compounds (between 0.1 and 7 ng L−1) were well below the limits recommended in the EU. The extraction yields for the different compounds obtained by IL-DLLME, ranged from 90.3% to 103.8%. Furthermore, high enrichment factors (301–346) were also achieved. The extraction efficiency of the optimised method is compared with that achieved by liquid–liquid extraction. Finally, the proposed method was successfully applied to the analysis of PAHs in real water samples (tap, bottled, fountain, well, river, rainwater, treated and raw wastewater).  相似文献   

18.
Retinol and α-tocopherol are biologically active compounds often monitored in blood samples because of their evident importance in human metabolism. In this study a novel ultra-performance liquid chromatographic (UPLC) method used for determination of both vitamins in human serum has been compared with conventional HPLC with particulate and monolithic C18 columns. In UPLC a sub-two-micron particle-hybrid C18 stationary phase was used for separation, in contrast with a five-micron-particle packed column and a monolithic column with a highly porous structure. Methanol, at flow rates of 0.48, 1.5, and 2.5 mL min−1, respectively, was used as mobile phase for isocratic elution of the compounds in the three methods. Detection was performed at 325 nm and 290 nm, the absorption maxima of retinol and α-tocopherol, respectively. Analysis time, sensitivity, mobile-phase consumption, validation data, and cost were critically compared for these different chromatographic systems. Although cost and mobile-phase consumption seem to make UPLC the method of choice, use of the monolithic column resulted in almost the same separation and performance with a slightly shorter analysis time. These methods are alternatives and, in routine laboratory practice, more economical means of analysis of large numbers of biological samples than use of a traditional particulate column.  相似文献   

19.
Disorders of certain branched-chain amino acids may be associated with the occurrence and development of non-alcoholic fatty liver disease. Measurement of related branched-chain amino acid levels could provide a reference for the clinical and scientific research of the non-alcoholic fatty liver disease. An established HPLC–FLD method was used to quantify aspartic acid, glutamate, glutamine, glycine, taurine, tyrosine, 4-amino butanoic acid, tryptophan, methionine, valine, phenylalanine, isoleucine and leucine in mouse brain tissue. Brain tissue samples mixed with internal standard (3-aminobutyric acid) were processed, then derivatized with 2-O-phthaldialdehyde, and finally separated on an ODS2 column through gradient elution at a flow rate of 1.0 ml·min−1. The excitation and emission wavelengths were set at 340 and 455 nm, respectively. The mobile phase A was 100% methanol and the mobile phase B consisted of 30 mmol·L−1 sodium acetate (pH 6.8). The injection volume was 20 μl and the single run time was 45 min. Several parameters, accuracy, precision, and stability, were verified and the results showed the established method had good sensitivity and resolution for all of the 13 compounds and internal standard in mouse brain.  相似文献   

20.
Reversed-phase high-performance liquid chromatographic methods were developed for the separation of enantiomers of eleven unnatural β2-amino acids on a new chiral stationary phase, using the 11-methylene-unit spacer of aminoundecylsilica gel for the bonding of (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid as selector. The nature and concentration of the acidic and organic modifiers, the pH, the mobile phase composition, and the structures of the analytes substantially influenced the retention and resolution. Separations were carried out at constant mobile phase compositions in the temperature range 7–40 °C and the changes in enthalpy, Δ(ΔH°), entropy, Δ(ΔS°), and free energy, Δ(ΔG°) were calculated. The elution sequence was determined in some cases: the S enantiomers eluted before the R enantiomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号