首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A new gallium (Ga(III)) ion-imprinted multi-walled carbon nanotubes (CNTs) composite sorbent was synthesized by a surface imprinting technique. The Ga(III) ion-imprinted/multi-walled carbon nanotubes (Ga(III)-imprinted/CNTs) sorbent was characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), nitrogen adsorption experiment, static adsorption experiment, and solid-phase extraction (SPE) experiment. The effects of sample volume, sample pH, washing and elution conditions on the extraction of Ga(III) ion from real sample were studied in detail. The imprinted sorbent offered a fast kinetics for the adsorption of Ga(III). The maximum static adsorption capacity of the imprinted sorbent towards was 58.8 μmol g−1. The largest selectivity coefficient for Ga(III) in the presence of Al(III) was over 57.3. Compared with non-imprinted sorbent, the imprinted sorbent showed good imprinting effect for Ga(III) ion, the imprinting factor (α) was 2.6, the selectivity factor (β) was 2.4 and 2.9 for Al(III) and Zn(II), respectively. The developed imprinted SPE method was applied successfully to the detection of trace Ga(III) ion in fly ash samples with satisfactory results.  相似文献   

2.
Recently, multi-wall carbon nanotubes (MWCNTs) as adsorbents of solid-phase extraction are attractive because they can be used for enrichment of organic compounds and metal ions at trace levels. In this study, we use the carboxyl modified multi-wall carbon nanotubes (CMMWCNTs) as adsorbents of solid-phase extraction for extraction of linear alkylbenzene sulfonates (LAS), which are widely used anion surfactant with different homologues, and detected by HPLC-UV. The effect of eluent and its volume, sample pH and flow rate, sample volume and the ultrasonic time of sample, the content of the electrolyte (NaCl) were investigated and optimized. The detection limit for LAS homologues was 0.02-0.03 μg L−1 with R.S.D. (n = 6) ranging from 2.04 to 10.03%. The recoveries of LAS homologues in the spiked environmental water samples ranged from 84.8 to 106.1%. The proposed method has been applied successfully to the analysis of LAS in aqueous environmental samples, which demonstrates that CMMWCNTs-based solid-phase extraction is a precision and convenient enrichment method and can be used for analysis of LAS homologues in water samples.  相似文献   

3.
Niu H  Cai Y  Shi Y  Wei F  Liu J  Mou S  Jiang G 《Analytica chimica acta》2007,594(1):81-92
The adsorptive potential of carbon nanotubes (single-walled carbon nanotubes and multi-walled carbon nanotubes) for solid-phase extraction of three groups of highly polar compounds (namely cephalosporins antibiotics, sulfonamides and phenolic compounds) was tested in this article. The analytes were strongly retained by the carbon nanotubes. And acceptable recoveries were obtained with the addition of ammonium acetate into eluents. The effects of solution pH on the recoveries of the antibiotics and phenolic compounds were examined. To check the retention abilities of three groups of compounds on carbon nanotubes, fixed amount of each analyte was added to different volumes (up to 500 mL) of aqueous solution, and then extracted by the sorbents. Comparative studies showed that the carbon nanotubes were much superior to C18 for the extraction of the highly polar analytes. For the cephalosporins antibiotics and sulfonamides, the carbon nanotubes showed stronger retention capability than graphitized carbon blacks, but for some of the phenolic compounds graphitized carbon blacks seemed to be more suitable, indicating different retention mechanisms of these analytes. To further assess the enrichment ability of carbon nanotubes for highly polar compounds, the solid-phase extraction method of multi-walled carbon nanotubes packed cartridge was well developed, and the sulfonamides were used as model compounds. Under the optimal procedures, the detection limits of sulfonamides were in the range of 27-38 ng L−1. The spiked recoveries from several real water samples obtained for sulfathiazole and sulfadiazine ranged from 55% to 79% and 72% to 92%, respectively, while the recoveries of sulfapyridine and sulfamethazine were in the range of 85-102%.  相似文献   

4.
Multi-walled carbon nanotubes (MWCNs) are used as adsorbent for solid-phase extraction (SPE) of several chlorophenols (CPs). CPs were adsorbed on MWCNs cartridge, then desorbed with pH 10.0 methanol, finally determined by HPLC. Under the optimized conditions, detection limits of 0.08-0.8 ng mL(-1) were obtained. The method had been applied to analyze the five CPs in tap water and river water.  相似文献   

5.
In this work, optimization of multi-residue solid phase extraction (SPE) procedures coupled with high-performance liquid chromatography for the determination of Propoxur, Atrazine and Methidathion from environmental waters is reported. Three different sorbents were used in this work: multi-walled carbon nanotubes (MWCNTs), C18 silica and activated carbon (AC). The three optimized SPE procedures were compared in terms of analytical performance, application to environmental waters, cartridge re-use, adsorption capacity and cost of adsorbent. Although the adsorption capacity of MWCNT was larger than AC and C18, however, the analytical performance of AC could be made close to the other sorbents by appropriate optimization of the SPE procedures. A sample of AC was then oxidized with various oxidizing agents to show that ACs of various surface properties has different enrichment efficiencies. Thus researchers are advised to try AC of various surface properties in SPE of pollutants prior to using expensive sorbents (such as MWCNT and C18 silica).  相似文献   

6.
In the present work, a GC method with nitrogen-phosphorus detection (NPD) was developed for the simultaneous determination of eight organophosphorus pesticide (OPP) residues (i.e., ethoprofos, diazinon, chlorpyrifos-methyl, fenitrothion, malathion, chlorpyrifos, fenamiphos, and buprofezin) in water samples. Preconcentration of the water samples was carried out using an SPE procedure with multiwalled carbon nanotubes (MWCNTs) of 10-15 nm od, 2-6 nm id, and 0.1-10 microm length as stationary phase. Extraction parameters, such as the amount of MWCNTs, sample volume, pH, and type and amount of the eluent were optimized. The most favorable conditions were as follows: 40 mg MWCNTs, 800 mL water, pH 6.0, and 20 mL dichloromethane, respectively. The MWCNTs-SPE-GC-NPD method was applied to the determination of these pesticides in real water samples: mineral and ground water as well as run-off water from an agricultural area collected shortly before opening out onto the sea. A recovery study was developed with five consecutive extractions of the three types of water spiked at three concentration levels (n = 15). Mean recovery values were in the range of 75-116% for mineral water (RSD < 6.3%), 67-119% for ground water (RSD < 5.8%), and 57-81% for run-off waters (RSDs < 6.9%), except for fenamiphos (mean recovery values between 40 and 84% for the three types of waters, RSDs < 8.9%). LODs were in the low ng/L level (i.e., levels below the maximum residue limits (MRLs) established by the European Union (EU) legislation for these compounds in waters). The proposed method was also applied to the analysis of six water samples (two of each type: mineral, ground, and run-off waters) in which no residues of the selected pesticides were found. Results show that the MWCNTs used in this work have a high adsorbability of the pesticides under study. The main advantage of the use of these MWCNTs is their low cost when compared with those MWCNTs previously used in the literature and with conventional SPE cartridges.  相似文献   

7.
The end functionalization of CNTs can introduce oxygen-containing negatively functional groups such as -COOH, -OH, or -CO on their surface site. If cationic surfactant such as cetyltrimethylammonium chloride (CTAC) was added to the functionalized CNTs, then interactions such as hydrophobic and ionic may lead to formation of hemimicelle/admicelle aggregates on the CNTs, a new kind of adsorbents, namely, the hemimicelle capped CMMWCNTs, is obtained. The application of the hemimicelle capped carbon nanotubes-based nanosized solid-phase extraction (SPE) adsorbents in environmental analysis is reported for the first time using arsenic as model target. The effect of adsorption and desorption conditions for arsenic including the amount of surfactant, initial pH of sample solution, the ultrasonic time of sample solution, the amount of electrolyte, flow rate, eluent and its amount were investigated and optimized prior to its determination by atomic fluorescence spectrophotometry (AFS). Arsenic can be quantitatively retained on the hemimicelle capped CMMWCNTs at pH 5-6 from sample volume up to 500 mL and then eluted completely with 2 mol L−1 HNO3 in the presence of 10 mg L−1 CTAC. The method detection limit for arsenic determination with AFS detection was 2 ng L−1, and the relative standard deviation (RSD, n = 11) was 5.3% at the 0.5 μg L−1 level. The recoveries of arsenic in the spiked environmental water samples ranged from 94% to 104.29% with 500 mL of water sample. The proposed method has been applied successfully to the analysis of arsenic in aqueous environmental samples, which demonstrates the hemimicelle capped CMMWCNTs can be an excellent SPE adsorbents for arsenic pretreatment and enrichment from real water samples.  相似文献   

8.
Yue Liu  Zhi-Qiang Wu 《Talanta》2009,79(5):1464-57
Hexahistidine-tagged protein functionalized multi-walled carbon nanotubes (MWCNTs/6His-tagged protein) were prepared and characterized by ultraviolet-visible spectrophotometry and atomic force microscopy. Both static and dynamical adsorption experiments showed that the MWCNTs/6His-tagged protein served as good sorbent for the solid-phase extraction of Cu2+ and Ni2+. Effective on-line sorption of Cu2+ and Ni2+ on the MWCNTs/6His-tagged protein packed microcolumn was achieved in a pH range of 3.0-4.5 and 4.5-6.0, respectively. The retained Cu2+ and Ni2+ were efficiently eluted with 0.2 mol L−1 imidazole-HCl solution for on-line flame atomic absorption spectrometric determination. The MWCNTs/6His-tagged protein exhibited fairly fast kinetics for the sorption of Cu2+ and Ni2+, and offered up to 20,000 and 1800 times improvement in the tolerable concentrations of co-existing ions over the MWCNTs for solid-phase extraction of Cu2+ and Ni2+, respectively. On-line solid-phase extraction at a flow rate of 5.0 mL min−1 for 60 s gave an enhancement factor of 29 for Cu2+ and 28 for Ni2+, a sample throughput of 45 h−1, and a detection limit (3s) of 0.31 μg L−1 for Cu2+ and 0.63 μg L−1 for Ni2+. The precision for 11 replicate measurements was 2.4% for 10 μg L−1 Cu2+, and 2.5% for 15 μg L−1 Ni2+.  相似文献   

9.
10.
Cao J  Li P  Yi L 《Journal of chromatography. A》2011,1218(52):9428-9434
A new CE system using ionic liquids coated multi-walled carbon nanotubes (ILs-MWNTs) as pseudostationary phase was developed for the simultaneous determination of four flavonoids, four phenolic acids and two saponins. Several parameters affecting the separation were studied, including the choice of ILs, ILs-MWNTs concentration, the respective use of ILs and MWNTs, buffer pH, SDS concentration and borate content. Results revealed that the addition of ILs-MWNTs in running electrolytes enhanced the separation of target compounds compared to conventional micelle because the surface of carbon nanotubes interacted favorably with the analytes. Under the optimum conditions, a baseline separation was achieved for these analytes within 11 min in a 41.5 cm of effective length fused-silica capillary. At a voltage of 28.0 kV, the separation was carried out in a 10mM borate buffer (pH 9.0) containing 100mM SDS, 6% propanol and 4 μg mL(-1) ILs-MWNTs. All calibration curves showed good linearity (r(2)>0.9990) within the test ranges. The intra- and inter-day precisions as determined from standard solutions were below 3.30% and 6.23%, respectively. The recoveries for ten compounds were found to range from 85.5 to 101.8%. The method was successfully applied for the determination of three types of compounds in Qishenyiqi dropping pills. Our experimental results indicated that the proposed method offered new opportunities for the analysis of complex samples.  相似文献   

11.
A sensitive and selective column adsorption method is proposed for the preconcentration and determination of diazinon. Diazinon was preconcentrated on multiwalled carbon nanotubes (MWCNTs) as an adsorbent and then determined by high-performance liquid chromatography (HPLC). Several parameters on the recovery of the analyte were investigated. The experimental results showed that it was possible to obtain quantitative analysis when the solution pH was 6 using 200 mL of validation solution containing 2 μg of diazinon and 5 mL of acetonitrile as an eluent. Recovery of diazinon was 95.2 ± 4.2% with a relative standard deviation for seven determinations of 4.9% under optimum conditions. The maximum preconcentration factor was 200 for diazinon when 1000 mL of sample solution volume was used. The linear range of calibration curve was 0.3 to 10,000 ng mL− 1 with a correlation coefficient of 0.997 and the detection limit (3S/N) was 0.06 ng mL− 1. The proposed method was successfully applied to the determination of diazinon in tap water with high precision and accuracy.  相似文献   

12.
A sensitive and selective preconcentration method using solid-phase extraction (SPE) disk, namely multiwalled carbon nanotubes (MWCNTs) disk, is proposed for the determination of atrazine and simazine in water samples. Atrazine and simazine were extracted on MWCNTs disk and then determined by gas chromatography–mass spectrometry (GC/MS). Several parameters on the enrichment factor of the analytes were investigated. The experimental results showed that it was possible to obtain quantitative analysis when the solution pH was 5 using 200 mL of validation solution containing 0.1 μg of triazines and 5 mL of acetone as an eluent. The maximum enrichment factors for atrazine and simazine were 3900 ± 250 and 4000 ± 110, respectively when 200 mL of sample solution volume was used. Relative standard deviations for seven determinations were 6.9% (atrazine) and 3.0% (simazine) under optimum conditions. The linear range of calibration curves were 0.1 to 1 ng mL− 1 for each analyte with good correlation coefficients. The detection limits (3S/N) were 2.5 and 5.0 pg mL− 1 for atrazine and simazine, respectively. The proposed method was successfully applied to the determination of atrazine and simazine in environmental water samples with high precision and accuracy.  相似文献   

13.
Summary The stability of atrazine, simazine, alachlor, metolachlor, and deethylatrazine on C18 Empore disks has been determined. Estuarine water (100 mL) spiked at 3 g L–1 with the target pesticide mixture was preconcentrated on the disks; the disks were then stored at –20°C, 4°C, and at room temperature for periods up to three months and were analyzed by gas chromatography with nitrogen-phosphorus detection. Complete recovery was observed after storage at –20°C throughout the period of the study. Losses up to maximum of 10% were observed after storage at 4°C. Higher losses (up to 24% for alachlor) occurred only at room temperature; the coefficient of variation for these determinations (8–11%) was also higher than that for the others (3–5%). The stability of the pesticides was dependent on the water matrix, on storage temperature, and on properties such as vapor pressure and water solubility.  相似文献   

14.
A modified quick, easy, cheap, effective, rugged and safe (QuEChERS) method with multi-walled carbon nanotubes (MWCNTs) as a reversed-dispersive solid-phase extraction (r-DSPE) material combined with gas chromatography-mass spectrometry was developed for the determination of 14 pesticides in complex matrices. Four vegetables (leek, onion, ginger and garlic) were selected as the complex matrices for validating this new method. This technique involved the acetonitrile-based sample preparation and MWCNTs were used as the r-DSPE material in the cleanup step. Two important parameters influencing the MWCNTs efficiency, the external diameters and the amount of MWCNTs used, were investigated. Under the optimized conditions, recoveries of 78-110% were obtained for the target analytes in the complex matrices at two concentration levels of 0.02 and 0.2 mg/kg. In addition, the RSD values ranged from 1 to 13%. LOQs and LODs for 14 pesticides ranged from 2 to 20 μg/kg and from 1 to 6 μg/kg, respectively.  相似文献   

15.
In this work, electrochemical properties of surface treated multi-walled carbon nanotubes (MWNTs) are studied in supercapacitors. Nitrogen and oxygen functional groups containing MWNTs are prepared by urea and acidic treatments, respectively. The surface properties of the MWNTs are confirmed by X-ray photoelectron spectroscopy (XPS) and zeta-potential measurements. The textural properties are characterized by N2 adsorption/desorption isotherm at 77 K using the BET eqaution, BJH method, and HK method. The electrochemical properties of the MWNTs are accumulated by cyclic voltammetry, impedance spectra, and charge-discharge cycling performance in 1 M H2SO4 at room temperature. As a result, the functionalized MWNTs lead to an increase in capacitance as compared with pristine MWNTs. It suggests that the pyridinic and pyridinic-N-oxides nitrogen species have effects on the specific capacitance due to the positive charge, and thus an improved electron transfer at high current loads results, the most important functional groups affecting capacitive behaviors.  相似文献   

16.
A modified version of the QuEChERS method has been developed for the determination of a group of ten organophosphorus pesticides (i.e. ethoprofos, dimethoate, diazinon, malaoxon, chlorpyrifos-methyl, fenitrothion, malathion, chlorpyrifos, fenamiphos and phosmet) and one thiadiazine pesticide (buprofezin) in three different types of soils (forestal, ornamental and agricultural). The method was validated through linearity, recovery, precision and accuracy studies, and also by carrying out a matrix-matched calibration for the three soils owing to the existence of a strong matrix effect. Acceptable recovery values were obtained (between 45 and 96%) for all the pesticides and soils, except for malathion and malaoxon in forestal and ornamental soils, from which they could not be quantitatively extracted. Limits of detection of the whole method ranged between 0.48 and 7.78 ng/g. The method was finally applied to the determination of chlorpyrifos concentration in a treated soil for cultivation of potatoes.  相似文献   

17.
Magnetic solid-phase extraction (M-SPE) is a procedure based on the use of magnetic sorbents for the separation and preconcentration of different organic and inorganic analytes from large sample volumes. The magnetic sorbent is added to the sample solution and the target analyte is adsorbed onto the surface of the magnetic sorbent particles (M-SPs). Analyte-M-SPs are separated from the sample solution by applying an external magnetic field and, after elution with the appropriate solvent, the recovered analyte is analyzed. This approach has several advantages over traditional solid phase extraction as it avoids time-consuming and tedious on-column SPE procedures and it provides a rapid and simple analyte separation that avoids the need for centrifugation or filtration steps. As a consequence, in the past few years a great deal of research has been focused on M-SPE, including the development of new sorbents and novel automation strategies. In recent years, the use of magnetic carbon nanotubes (M-CNTs) as a sorption substrate in M-SPE has become an active area of research. These materials have exceptional mechanical, electrical, optical and magnetic properties and they also have an extremely large surface area and varied possibilities for functionalization. This review covers the synthesis of M-CNTs and the different approaches for the use of these compounds in M-SPE. The performance, general characteristics and applications of M-SPE based on magnetic carbon nanotubes for organic and inorganic analysis have been evaluated on the basis of more than 110 references. Finally, some important challenges with respect the use of magnetic carbon nanotubes in M-SPE are discussed.  相似文献   

18.
A simple, sensitive, and reliable method based on a multi-walled carbon nanotubes (MWNTs) modified carbon ionic liquid electrode (CILE) has been successfully developed for determination of dopamine (DA) in the presence of ascorbic acid (AA). The acid-treated MWNTs with carboxylic acid functional groups could promote the electron-transfer reaction of DA and inhibit the voltammetric response of AA. Due to the good performance of the ionic liquid, the electrochemical response of DA on the MWNTs/CILE was better than that of other MWNTs modified electrodes. Under the optimum conditions a linear calibration plot was obtained in the range 5.0×10(-8) to 2.0×10(-4) mol L(-1) and the detection limit was 1.0×10(-8) mol L(-1).  相似文献   

19.
Summary A systematic study comparing the methodology and analytical results obtained in an investigation of seven pesticide residues (Molinate, Atrazine, Carbofuran, Pirimicarb, Prometryn, Malathion and Tetrachlorvinphos) in soil samples is reported. Solid-phase extraction (SPE) using glass columns and 47 mm disks of octyl and octadecyl-bonded silica was used in the pesticide analysis. The best extraction efficiency and clearest extracts are obtained with C8 disks. The analyses were carried out by capillary gas chromatography with nitrogen and phosphorus detection. Recovery experiments were performed at ppb levels in spiked soil samples. The average recoveries of the compounds were 53–77%. Detection limits are between 5 and 30 ng g–1 based on 5 g moist soil sample. The method was validated by comparing it with conventional liquid-liquid extraction.  相似文献   

20.
Summary A method has been developed for determination of twenty-four polar pesticides—nine organophosphorus pesticides, thirteen organonitrogen compounds, and two triazine degradation products—in surface water. It entails extraction of the target pesticides from 1-L water samples by solid-phase extraction (SPE), then gas chromatography (GC) with large-volume (40 μL) injection. Filtered surface water, from the St Lawrence River in Canada and the River Loire and its tributaries in France, was extracted on cartridges filled with 500 mg Carbopack B (120–400 mesh). Analysis was performed by gas chromatography with a thermionic specific detector (GC-TSD) and a mass spectrometric (MS) detector. Overall percentage recoveries were satisfactory (>70%) for all target pesticides, with precision below 10%. Detection limits were between 0.5 and 4 ng L−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号