首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stir bar sorptive extraction and liquid desorption followed by large volume injection coupled to gas chromatography-quadrupole mass spectrometry (SBSE-LD/LVI-GC-qMS) had been applied for the determination of volatiles in wines. The methodology was optimised in terms of extraction time and influence of ethanol in the matrix; LD conditions, and instrumental settings. The optimisation was carried out by using 10 standards representative of the main chemical families of wine, i.e. guaiazulene, E,E-farnesol, β-ionone, geranylacetone, ethyl decanoate, β-citronellol, 2-phenylethanol, linalool, hexyl acetate and hexanol. The methodology shows good linearity over the concentration range tested, with correlation coefficients higher than 0.9821, a good reproducibility was attained (8.9-17.8%), and low detection limits were achieved for nine volatile compounds (0.05-9.09 μg L−1), with the exception of 2-phenylethanol due to low recovery by SBSE. The analytical ability of the SBSE-LD/LVI-GC-qMS methodology was tested in real matrices, such as sparkling and table wines using analytical curves prepared by using the 10 standards where each one was applied to quantify the structurally related compounds. This methodology allowed, in a single run, the quantification of 67 wine volatiles at levels lower than their respective olfactory thresholds. The proposed methodology demonstrated to be easy to work-up, reliable, sensitive and with low sample requirement to monitor the volatile fraction of wine.  相似文献   

2.
A stir bar sorptive extraction with liquid desorption followed by large volume injection coupled to gas chromatography-quadrupole mass spectrometry (SBSE-LD/LVI-GC-qMS) was evaluated for the simultaneous determination of higher alcohol acetates (HAA), isoamyl esters (IsoE) and ethyl esters (EE) of fatty acids. The method performance was assessed and compared with other solventless technique, the solid-phase microextraction (SPME) in headspace mode (HS). For both techniques, influential experimental parameters were optimised to provide sensitive and robust methods. The SBSE-LD/LVI methodology was previously optimised in terms of extraction time, influence of ethanol in the matrix, liquid desorption (LD) conditions and instrumental settings. Higher extraction efficiency was obtained using 60 min of extraction time, 10% ethanol content, n-pentane as desorption solvent, 15 min for the back-extraction period, 10 mL min−1 for the solvent vent flow rate and 10 °C for the inlet temperature. For HS-SPME, the fibre coated with 50/30 μm divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) afforded highest extraction efficiency, providing the best sensitivity for the target volatiles, particularly when the samples were extracted at 25 °C for 60 min under continuous stirring in the presence of sodium chloride (10% (w/v)). Both methodologies showed good linearity over the concentration range tested, with correlation coefficients higher than 0.984 for HS-SPME and 0.982 for SBES-LD approach, for all analytes. A good reproducibility was attained and low detection limits were achieved using both SBSE-LD (0.03-28.96 μg L−1) and HS-SPME (0.02-20.29 μg L−1) methodologies. The quantification limits for SBSE-LD approach ranging from 0.11 to 96.56 μg Land from 0.06 to 67.63 μg L−1 for HS-SPME. Using the HS-SPME approach an average recovery of about 70% was obtained whilst by using SBSE-LD obtained average recovery were close to 80%. The analytical and procedural advantages and disadvantages of these two methods have been compared.Both analytical methods were used to determine the HAA, IsoE and EE fatty acids content in “Terras Madeirenses” table wines. A total of 16 esters were identified and quantified from the wine extracts by HS-SPME whereas by SBSE-LD technique were found 25 esters which include 2 higher alcohol acetates, 4 isoamyl esters and 19 ethyl esters of fatty acids. Generally SBSE-LD provided higher sensitivity with decreased analysis time.  相似文献   

3.
The persistence of effervescence and foam collar during a Champagne or sparkling wine tasting constitute one, among others, specific consumer preference for these products. Many different factors related to the product or to the tasting conditions might influence their behavior in the glass. However, the underlying factor behind the fizziness of these wines involves a second in-bottle alcoholic fermentation, also well known as the prise de mousse. The aim of this study was to assess whether a low temperature (13 °C) or a high temperature (20 °C) during the in-bottle fermentation might have an impact on the effervescence and the foaming properties (i.e., collar height and bubble size) of three French sparkling wines (a Crémant de Loire and two Champagne wines), under standard tasting conditions. Our results showed that sparkling wines elaborated at 13 °C and served in standard tasting conditions (i.e., 100 mL, 18 °C) had better ability to keep the dissolved CO2 (between 0.09 and 0.30 g/L) in the liquid phase than those elaborated at 20 °C (with P < 0.05). Most interestingly, we also observed, for the Crémant de Loire and for one Champagne wine, that the lower the temperature of the prise de mousse, the smaller (with P < 0.05) the bubbles in the foam collar throughout the wine tasting.  相似文献   

4.
In champagne and sparkling wine tasting, the concentration of dissolved CO2 is indeed an analytical parameter of high importance since it directly impacts the four following sensory properties: (i) the frequency of bubble formation in the glass, (ii) the growth rate of rising bubbles, (iii) the mouth feel, and (iv) the nose of champagne, i.e., its so-called bouquet. In this state-of-the-art review, the evolving nature of the dissolved and gaseous CO2 found in champagne wines is evidenced, from the bottle to the glass, through various analytical techniques. Results obtained concerning various steps where the CO2 molecule plays a role (from its ingestion in the liquid phase during the fermentation process to its progressive release in the headspace above the tasting glass) are gathered and synthesized to propose a self-consistent and global overview of how gaseous and dissolved CO2 impact champagne and sparkling wine science.  相似文献   

5.
Costin JW  Barnett NW  Lewis SW 《Talanta》2004,64(4):894-898
Flow injection methodology is described for the determination of proline in red and white wines using tris(2,2′-bipyridyl)ruthenium(II) chemiluminescence detection. Selective conditions were achieved for proline at pH 10, while other amino acids and wine components did not interfere. The precision of the method was less than 1.00% (R.S.D.) for five replicates of a standard (4 × 10−6 M) and the detection limit was 1 × 10−8 M. The level of proline in white and sparkling wines using the developed methodology was equivalent to those achieved using HPLC-FMOC amino acid analysis. SPE removal of phenolic material was required for red wines to minimize Ru(bipy)33+ consumption and its associated effect on accuracy.  相似文献   

6.
An analytical methodology based on headspace solid phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography—time-of-flight mass spectrometry (GC × GC–ToFMS) was developed for the identification and quantification of the toxic contaminant ethyl carbamate (EC) directly in fortified wines. The method performance was assessed for dry/medium dry and sweet/medium sweet model wines, and for quantification purposes, calibration plots were performed for both matrices using the ion extraction chromatography (IEC) mode (m/z 62). Good linearity was obtained with a regression coefficient (r2) higher than 0.981. A good precision was attained (R.S.D. <20%) and low detection limits (LOD) were achieved for dry (4.31 μg/L) and sweet (2.75 μg/L) model wines. The quantification limits (LOQ) and recovery for dry wines were 14.38 μg/L and 88.6%, whereas for sweet wines were 9.16 μg/L and 99.4%, respectively. The higher performance was attainted with sweet model wine, as increasing of glucose content improves the volatile compound in headspace, and a better linearity, recovery and precision were achieved. The analytical methodology was applied to analyse 20 fortified Madeira wines including different types of wine (dry, medium dry, sweet, and medium sweet) obtained from several harvests in Madeira Island (Portugal). The EC levels ranged from 54.1 μg/L (medium dry) to 162.5 μg/L (medium sweet).  相似文献   

7.
Tannin content in red wines is positively correlated with astringency perception and wine grade; however, tannin quantification is one of the main challenges. In this study, tannin content was quantified using three analytical methods in commercial red wines from Vitis vinifera and interspecific cold-hardy hybrids including Marquette, Frontenac, and Petite pearl cultivars. Protein (PP) and methylcellulose precipitation (MCP) methods were compared to a HPLC-DAD method, which is based on the interaction between tannins and a hydrophobic surface (RPC). Frontenac wines were the poorest in tannins and Cabernet sauvignon wines were the richest regardless of the method used. In cold-hardy red wines, the tannin content was higher in Marquette with high alcohol content, which suggested that the tannins were extracted from seeds rather than skins. The high limit of quantification of the PP method and the presence of anthocyanin di-glucosides in cold-hardy wines were parameters suggesting that protein and methylcellulose precipitation methods were neither suitable nor reliable for the quantification of tannins in cold-hardy red wines. The tannin content quantified by RPC was positively correlated to tannin quantified by MCP, suggesting that the RPC method would be relevant for the quantification of tannins in red wines.  相似文献   

8.
Two novel methodologies for quantification of C13 norisoprenoids in wines were developed. The first methodology, method A (reference method) was based on the headspace solid-phase microextraction combined with gas chromatography–quadrupole mass spectrometry operating in selected ion monitoring mode (HS-SPME–GC–qMS–SIM). This methodology allowed to select the GC conditions for an adequate chromatographic resolution of wine components. The second methodology, method B (rapid method) was based on the HS-SPME–GC–qMS–SIM, using GC conditions that allowed to obtain a C13 norisoprenoid volatile signature. In the later, the GC capillary column of 30 m at 220 °C was used acting as a transfer line of the components sorbed by the SPME coating fibre to the mass spectrometer, which acts as a sensor for m/z fragments 142 and 192. It does not require any pre-treatment of the sample, and the C13 norisoprenoid composition of the wine was evaluated based on the chromatographic profile and specific m/z fragments, without complete chromatographic separation of its components. For quantification purposes, external calibration curves were constructed with β-ionone chemical standard. Calibration curves with regression coefficient (r2) of 0.9940 and 0.9968, RSD of 1.08% and 12.51%, and detection limits of 1.10 and 1.57 μg L−1 were obtained for methods A and B, respectively. These methodologies were applied to seventeen white and red table wines. Two vitispirane isomers (158–1529 μg L−1) and 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) (6.42–39.45 μg L−1) were quantified. The data obtained for vitispirane isomers and TDN using the two methods were highly correlated (r2 of 0.9756 and 0.9630, respectively). Associated to the fast and robust character of the proposed rapid method B and considering the extraction time, it is important to focus its selectivity and potential applicability if specific m/z fragments would be established for new analytes.  相似文献   

9.
Wine metabolomics constitutes a powerful discipline towards wine authenticity assessment through the simultaneous exploration of multiple classes of compounds in the wine matrix. Over the last decades, wines from autochthonous Greek grape varieties have become increasingly popular among wine connoisseurs, attracting great interest for their authentication and chemical characterization. In this work, 46 red wine samples from Agiorgitiko and Xinomavro grape varieties were collected from wineries in two important winemaking regions of Greece during two consecutive vintages and analyzed using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QToF-MS). A targeted metabolomics methodology was developed, including the determination and quantification of 28 phenolic compounds from different classes (hydroxycinnamic acids, hydroxybenzoic acids, stilbenes and flavonoids). Moreover, 86 compounds were detected and tentatively identified via a robust suspect screening workflow using an in-house database of 420 wine related compounds. Supervised chemometric techniques were employed to build an accurate and robust model to discriminate between two varieties.  相似文献   

10.
Carbonyl compounds (CC) play an important role in beverage aroma since they may affect flavor of wines, brandies, and beers, among others. For this reason, it is necessary to identify and quantify CC through adequate analytical techniques. This study is a proposal of both developing and optimization of a new analytical methodology that allows investigate C1–C8 CC in wines simultaneously by quantifying even those ones that are predominantly present in the adduct form hydroxylalkylsulfonic acids (HASA). The HASA dissociation is undertaken by specific alkaline media (pH 11). The developed methodology employed the LC with UV/VIS detection (λ = 365 nm) technique under gradient elution in the way to reach both free‐CC and bound‐CC quantification. Results showed that binary gradient system using eluent A (MeOH/ACN/H2O 74.5:0.5:25% v/v/v) and eluent B (MeOH) reached the best separation condition of both lower and higher molecular mass CC. This proposed method allowed simultaneous quantification of formaldehyde, acetaldehyde, propanone, furfuraldehyde, butyraldehyde, benzaldehyde, hexanaldehyde, 2‐ethyl‐hexanaldehyde, E‐pent‐2‐en‐1‐al, and cyclohexanone – all of them were found in white wine (Moscato Canelli) and red wine (Shiraz) produced in the São Francisco Valley, in the Northeastern Region of Brazil – although this optimized method may probably be suitable for quantification of propionaldehyde, isobutyraldehyde, heptanaldehyde, octanaldehyde, benzaldehyde, and E‐hex‐2‐en‐1‐al as well. We could not prove if this method is also able to determine the latter CC group since we have not found these substances present in detectable levels in our real samples considered in this study.  相似文献   

11.
Chromatographic separation using fluorescence as a detection mode revealed, besides a series of flavan-3-ols, the recurrent presence of an undefined compound in Bordeaux red wine. Its isolation and structure characterization by complementary means (high-resolution mass spectrometry, nuclear magnetic resonance, and chemical synthesis) has permitted us to identify it as the nitrogen-containing glycoconjugate 3-indolyl-(2R)-O-β-d-glucosyl-lactic acid. Its quantification was performed for different wines of different vine varieties and terroirs with the aim to assess whether this compound may be used as a terroir, variety, or wine process tag.  相似文献   

12.
The oxidation processes of white wines can occur during storage and commercialization due to several factors, and these can negatively affect the color, aroma, and quality of the wine. Wineries should have faster and simpler methods that provide valuable information on oxidation stability of wines and allow fast decision-making procedures, able to trigger suitable technological interventions. Using a portable prototype instrument for light irradiations at different wavelengths and times was considered and evaluated on sensorial, spectrophotometric, and colorimetric parameters of white wines. The sensorial analysis revealed that white and light blue were the most significant, after only 1 h of irradiation. The experimental results showed that hydrogen peroxide could enhance the effect of light treatment, allowing a contemporary evaluation of the oxidation stability of wine against light and chemical stresses. As expected, a good correlation (R2 > 0.89) between optical density at 420 nm and b* parameter was highlighted. The synergic effect of light and H2O2 was also studied on the hydrolyzable and condensed tannins’ additions to white wine. The proposed methodology could be used to evaluate the oxidative stability of white wines, but also to evaluate the effect of some oenological adjuvants on wine stability.  相似文献   

13.
《Analytica chimica acta》2002,458(1):139-145
A method has been developed to determine the most significant volatiles of a wine aged in barrels: trans- and cis-whiskylactone, guaiacol, 4-ethylguaiacol, eugenol, 4-ethylphenol, vanillin, furfural and γ-butyrolactone. This method consists in an extraction with dichloromethane, according to classical methods, but emulsion formation is avoided and the later analysis is carried out by thermal desorption-gas chromatography with mass spectrometric detection. This method is quite rapid and gives calibration graphs with linear regression coefficients between 0.97 and 0.99 for each compound and variation coefficients of variation <10%. This method has been applied to three wines with different tannic content (free-run or base wine and two other from base wine by adding both enological tannin and its own press wine) aged 6 months in French oak barrels (Allier). Sensorial analyses were carried out by expert tasters. All results were used in discriminant analyses, but only the lactones and vanillin were necessary to properly classify all the wines according to tannic content.  相似文献   

14.
The varietal aroma of most wines is determined by a relatively small number of odor-active compounds, that are generated in ripening berries. These trace compounds occur in the ppb-to ppt-range and are mainly monoterpenes, C13-norisoprenoids, thiols and pyrazines. Identification and elucidation of their biosynthetical pathways are important to unlocking the secrets of wine flavor.  相似文献   

15.
Background: Three accelerated oxidation tests were proposed to simulate red wine oxidation thus providing information useful to correctly manage moderate oxygen exposure of wine during aging in regard to phenolic composition and wine color. Since the results of the tests have never been compared on wines with different initial composition, the aim of this study was to find a suitable method to simulate oxidation of any still red wine. Methods: Aglianico, Barbera, Gaglioppo, Magliocco, and Nerello wines were treated with (1) three cycles of air saturation, (2) the addition of hydrogen peroxide, and (3) the addition of acetaldehyde. Changes in chromatic characteristics and phenolic composition were determined by spectrophotometric and HPLC methods. Results: Important differences in the behavior of the different wines were detected: the highest formation of polymeric pigments was observed in Barbera and Aglianico wines. In contrast, Gaglioppo and Magliocco wines showed a lower variability before and after the oxidation probably due to the lower anthocyanin/tannin ratio. Among the accelerated oxidation tests applied, no significant differences in color parameters and phenolic composition were detected in samples treated with the addition of H2O2 and the air saturation method. Conclusion: The study demonstrated that H2O2 addition is a successful tool to predict the evolution of different phenolic compounds during the air saturation treatment of wines.  相似文献   

16.
Interlaboratory studies are decisive tools to help the validation of a specific analytical methodology or to assess the reproducibility of the use of different methods to analyze a given compound or compounds in certain sample matrices. In this work, homogeneous samples of two white wines (“White Wine” and “White Liqueur Wine”) and one red wine (“Red Fortified Wine”) from Portugal with different production techniques and characteristics, namely in alcohol strength (10.5%, 16.0% and 19.0% ethanolic content, respectively), were analyzed for their contents in ochratoxin A (OTA), a mycotoxin generated from fungal contamination. White Liqueur Wine was naturally contaminated, whereas the other two wine type were spiked with ethanolic OTA solutions. The participation of 24 laboratories from 17 countries of five continents was ensured for this study. Although with no restrictions in terms of analytical methodology to employ, 75% of the laboratories resorted to immunoaffinity columns clean-up followed by high performance liquid chromatography with fluorescence detection (HPLC-FD), most of them in accordance with the European Standard EN 14133. For White Wine samples, the general mean OTA concentration was 1.96 μg/l (two outliers) with interlaboratorial standard deviation (sL) of 0.53 μg/l; for White Liqueur Wine, mean of 1.59 μg/l (one outlier), with sL = 0.59 μg/l; and for Red Fortified Wine, mean of 2.73 μg/l (no outliers), with sL = 0.96 μg/l. Outliers were determined by Cochran and Grubbs tests. The Horrat index, recommended by the Association of Official Analytical Chemists (AOAC) for the quality assurance of the collaborative study was, on average, 1.7. This study proved that OTA determination in wines is reproducible, regardless of the methodology employed.  相似文献   

17.
18.
The influence of commercial enzymes on wine polysaccharide content was studied. Tempranillo wines were made using commercial maceration enzyme preparations along with controls. The analytical method for the quantification of wine polysaccharides was carried out by a multistep procedure. Wine-soluble polysaccharides were isolated by wine concentration polysaccharides precipitation with an acid-alcohol medium and separation of each polysaccharide family by high resolution size-exclusion chromatography on a Superdex-75 HR column. The glycosyl-residue compositions of the fractions obtained were determined by gas chromatography with flame ionisation and mass spectrometry of their trimethylsilyl-ester O-methyl glycosides after acidic methanolysis and derivatization. The content of each fraction was estimated from the concentration of individual glycosyl residues that are characteristic of well-defined wine polysaccharides. The analytical method proposed had good sensitivity, repeatability, reproducibility and accuracy. Soluble polysaccharides in wine were essentially composed of grape cell wall polysaccharides: arabinogalactans and arabinogalactan-proteins (38-41%), and rhamnogalacturonans-II (38-46%). Yeast mannans and mannoproteins were also present but in smaller proportions (14-19%). Wines treated with commercial enzymes had larger concentrations of arabinogalactans, arabinogalactan-proteins and rhamnogalacturonans-II than control wines, but the content of mannans and mannoproteins was similar in both wines. This indicated that the commercial enzymes hydrolysed grape pectic polysaccharides during the maceration-fermentation stage but had no influence on yeast parietal polysaccharides.  相似文献   

19.
Analytical methodology was developed and validated for the determination of spiroxamine residues in grapes, must, and wine by gas chromatography/ion trap-mass spectrometry (GC/IT-MS). Two extraction procedures were used: the first involved grapes, must, and wine extraction with alkaline cyclohexane-dichloromethane (9 + 1, v/v) solution, and the second grape extraction with acetone, dichloromethane, and petroleum ether. In both procedures, the extract was centrifuged, evaporated to dryness, and reconstituted in cyclohexane or 2,2,4-trimethylpentane-toluene (9 + 1, v/v), respectively. Spiroxamine diastereomers A and B were determined by GC/IT-MS, and a matrix effect was observed in the case of grapes but not in must and wine. Recovery of spiroxamine from fortified samples at 0.02 to 5.0 mg/kg ranged from 78-102% for grapes and must, with relative standard deviation (RSD) <13%; for red and white wines, recoveries ranged from 90 to 101% with RSD <9%. The limit of quantification was 0.02 mg/kg for grapes, must, and wine or 0.10 mg/kg for grapes, depending on the extraction procedure used.  相似文献   

20.
Analysis of terpenes in white wines using SPE-SPME-GC/MS approach   总被引:3,自引:0,他引:3  
Terpenes contribute to some white wines aroma, especially these produced from Muscat grapes and others aromatic ones of high terpene contents (Gewürtztramminer, Traminer, Huxel, Sylvaner). Terpenes are present in wine in free and bound (in a form of glycosides) forms. Analyses of bound terpenes are usually performed using solid phase extraction after hydrolysis of glycosides. A new method for determination of terpenes from wine, focused on determination of terpenes released after acidic hydrolysis, based on solid phase extraction (SPE) followed by solid phase microextraction (SPME) was developed. Non-polar (free) and polar (bound terpenes) fractions were separated on 500 mg C18 cartridges. Bound terpenes were sampled using SPME immediately after acidic hydrolysis in non-equilibrium conditions. Application of combined SPE-SPME approach allowed quantification of selected terpenes in lower concentrations than in SPE approach and added a selectivity to the method, which enabled detection of compounds non-detectable in SPE extracts. Results obtained by SPE and SPE-SPME approach were correlated for free terpenes and those released after acid hydrolysis 20 white wines obtained from different grape varieties (R2 = 0.923). Although developed for wine terpenes analysis, SPE followed by SPME approach has a great potential in analysis of other bound wine flavor compounds, especially those potent odorants present in trace amounts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号