共查询到20条相似文献,搜索用时 0 毫秒
1.
Proteomics is the large-scale study of proteins, particularly their expression, structures and functions. This still-emerging combination of technologies aims to describe and characterize all expressed proteins in a biological system. Because of upper limits on mass detection of mass spectrometers, proteins are usually digested into peptides and the peptides are then separated, identified and quantified from this complex enzymatic digest. The problem in digesting proteins first and then analyzing the peptide cleavage fragments by mass spectrometry is that huge numbers of peptides are generated that overwhelm direct mass spectral analyses. The objective in the liquid chromatography approach to proteomics is to fractionate peptide mixtures to enable and maximize identification and quantification of the component peptides by mass spectrometry. This review will focus on existing multidimensional liquid chromatographic (MDLC) platforms developed for proteomics and their application in combination with other techniques such as stable isotope labeling. We also provide some perspectives on likely future developments. 相似文献
2.
Shujun Wang Suming Chen Jianing Wang Peng Xu Yuanming Luo Wenbin Du 《Electrophoresis》2014,35(17):2528-2533
This paper describes a simple and reusable microfluidic device combining solution IEF (sIEF) with MALDI‐TOF MS for rapid proteomic and metabolic analysis of microliter samples. The device contains two glass plates with nanoliter microwell arrays, which can be assembled to form a fluidic path for sIEF separation, and reconfigured for dividing separated bands. One microliter samples can be loaded and separated by sIEF into static bands in 10~30 min. After a slipping operation, the static IEF bands can be divided into nanoliter droplets in microwells without mobilization, and the device can be opened for in situ MALDI‐TOF MS detection without loss of separation resolution. The performance of the device is characterized by separating and identifying intact proteins. The applicability in metabolic analysis is demonstrated by preliminary experiments on profiling small molecular metabolites in cerebrospinal fluid microdialysates from rat brain. 相似文献
3.
Jeonghoon Lee Steven A. Soper Kermit K. Murray 《Journal of mass spectrometry : JMS》2009,44(5):579-593
Microfluidic devices coupled to mass spectrometers have emerged as excellent tools for solving the complex analytical challenges associated with the field of proteomics. Current proteome identification procedures are accomplished through a series of steps that require many hours of labor‐intensive work. Microfluidics can play an important role in proteomic sample preparation steps prior to mass spectral identification such as sample cleanup, digestion, and separations due to its ability to handle small sample quantities with the potential for high‐throughput parallel analysis. To utilize microfluidic devices for proteomic analysis, an efficient interface between the microchip and the mass spectrometer is required. This tutorial provides an overview of the technologies and applications of microfluidic chips coupled to mass spectrometry for proteome analysis. Various approaches for combining microfluidic devices with electrospray ionization (ESI) and matrix‐assisted laser desorption/ionization (MALDI) are summarized and applications of chip‐based separations and digestion technologies to proteomic analysis are presented. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
4.
To evaluate the applicability of EDI to material analysis as a new ionization method, a comparison of EDI with solvent-free matrix-assisted laser desorption ionization (MALDI) and laser desorption ionization (LDI) was made for the analysis of organic pigments, e.g. Pigment Yellow 93, Pigment Yellow 180, and Pigment Green 36, as test samples, which are poorly soluble in standard solvents. In EDI, the samples were prepared in two ways: deposition of suspended samples in appropriate solvents and dried on the substrate, and the direct deposition of the powder samples on the substrate. No matrices were used. Both sample preparation methods gave similar mass spectra. Equally strong signals of [M + H](+) and [M - H](-) ions were observed with some fragment ions for azo pigments in the respective positive or negative mode of operation. For the powder sample of the phthalocyanine pigment PG36, M(+*) and [M + H](+) in the positive mode and M(-*) in the negative mode of operation were observed as major ions. Positive-mode, solvent-free MALDI gave M(+), [M + H](+) and [M + Na](+) and negative mode gave [M - H](-) depending on the sample preparation. As solvent-free MALDI, EDI was also found to be an easy-to-operate, versatile method for the samples as received. 相似文献
5.
Qiuqin Zhou Stefano Rizzo Janina Oetjen Annabelle Fülöp Miriam Rittner Hartmut Gillandt Carsten Hopf 《Angewandte Chemie (International ed. in English)》2023,62(22):e202217047
Insufficient vacuum stability of matrix chemicals is a major limitation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) of large tissue sample cohorts. Here, we designed and synthesized the photo-cleavable caged molecule 4,5-dimethoxy-2-nitrobenzyl-2,5-dihydroxyacetophenone (DMNB-2,5-DHAP) and employed it for lipid MALDI-MSI of mouse brain tissue sections. DMNB-2,5-DHAP is vacuum-stable in a high vacuum MALDI ion source for at least 72 h. Investigation of the uncaging process suggested that the built-in laser (355 nm) in the MALDI ion source promoted the in situ generation of 2,5-DHAP. A caging group is used for the first time in designing a MALDI matrix that is vacuum-stable, uncaged upon laser irradiation during the measurement process, and that boosts lipid ion intensity with MALDI-2 laser-induced postionization. 相似文献
6.
Florian Junge Pin-Wei Lee Dr. Abhishek Kumar Singh Janos Wasternack Michał P. Pachnicz Prof. Dr. Rainer Haag Christoph A. Schalley 《Angewandte Chemie (International ed. in English)》2023,62(12):e202213866
This Minireview discusses recent developments in research on the interfacial phenomena of fluorinated amphiphiles, with a focus on applications that exploit the unique and manifold interfacial properties associated with these amphiphiles. Most notably, fluorinated amphiphiles form stable aggregates with often distinctly different morphologies compared to their nonfluorinated counterparts. Consequently, fluorinated surfactants have found wide use in high-performance applications such as microfluidic-assisted screening. Additionally, their fluorine-specific behaviour at solid/liquid interfaces, such as the formation of superhydrophobic coatings after deposition on surfaces, will be discussed. As fluorinated surfactants and perfluorinated materials in general pose potential environmental threats, recent developments in their remediation based on their adsorption onto fluorinated surfaces will be evaluated. 相似文献
7.
Microdialysis (MD) is a sampling technique that can be employed to monitor biological events both in vivo and in vitro. When it is coupled to an analytical system, microdialysis can provide near real-time information on the time-dependent concentration changes of analytes in the extracellular space or other aqueous environments. Online systems for the analysis of microdialysis samples enable fast, selective and sensitive analysis while preserving the temporal information. Analytical methods employed for online analysis include liquid chromatography (LC), capillary (CE) and microchip electrophoresis and flow-through biosensor devices. This review article provides an overview of microdialysis sampling and online analysis systems with emphasis on in vivo analysis. Factors that affect the frequency of analysis and, hence, the temporal resolution of these systems are also discussed. 相似文献
8.
Zhen Liu Peng Zhang Lars Kstner Dietrich A. Volmer 《Journal of mass spectrometry : JMS》2019,54(11):878-884
Overcoming the detrimental effects of sweet spots during crystallization is an important step to improve the quantitative abilities of matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry. In this study, we introduce MALDI targets, which exhibit a channel design to reduce sweet spot phenomena and improve reproducibility. The size of the channels was 3.0 mm in length, 0.35 mm in depth, and 0.40 mm in width, adjusted to the width of the implemented laser beam. For sample deposition, the matrix/sample mixture was homogenously deposited into the channels using capillary action. To demonstrate the proof‐of‐principle, the novel plates were used for the quantification of acetyl‐L‐carnitine in human blood plasma using a combined standard addition and isotope dilution method. The results showed that the reproducibility of acetyl‐L‐carnitine detection was highly improved over a conventional MALDI‐MS assay, with RSD values of less than 5.9% in comparison with 15.6% using the regular MALDI method. The limits of quantification using the new plates were lowered approximately two‐fold in comparison with a standard rastering approach on a smooth stainless‐steel plate. Matrix effects were also assessed and shown to be negligible. The new assay was subsequently applied to the quantification of acetyl‐L‐carnitine in human plasma samples. 相似文献
9.
Belder D 《Angewandte Chemie (International ed. in English)》2005,44(23):3521-3522
10.
In the last decades, the basic techniques of microfluidics for the study of cells such as cell culture, cell separation, and cell lysis, have been well developed. Based on cell handling techniques, microfluidics has been widely applied in the field of PCR (Polymerase Chain Reaction), immunoassays, organ-on-chip, stem cell research, and analysis and identification of circulating tumor cells. As a major step in drug discovery, high-throughput screening allows rapid analysis of thousands of chemical, biochemical, genetic or pharmacological tests in parallel. In this review, we summarize the application of microfluidics in cell-based high throughput screening. The screening methods mentioned in this paper include approaches using the perfusion flow mode, the droplet mode, and the microarray mode. We also discuss the future development of microfluidic based high throughput screening platform for drug discovery. 相似文献
11.
Decellularization of intact tissue enables MALDI imaging mass spectrometry analysis of the extracellular matrix 下载免费PDF全文
Megan Gessel Jeffrey M. Spraggins Paul Voziyan Billy G Hudson Richard M Caprioli 《Journal of mass spectrometry : JMS》2015,50(11):1288-1293
Matrix‐assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a powerful molecular mapping technology that offers unbiased visualization of the spatial arrangement of biomolecules in tissue. Although there has been a significant increase in the number of applications employing this technology, the extracellular matrix (ECM) has received little attention, likely because ECM proteins are mostly large, insoluble and heavily cross‐linked. We have developed a new sample preparation approach to enable MALDI IMS analysis of ECM proteins in tissue. Prior to freezing and sectioning, intact tissues are decellularized by incubation in sodium dodecyl sulfate. Decellularization removes the highly abundant, soluble species that dominate a MALDI IMS spectrum while preserving the structural integrity of the ECM. In situ tryptic hydrolysis and imaging of tryptic peptides are then carried out to accommodate the large sizes of ECM proteins. This new approach allows the use of MALDI IMS for identification of spatially specific changes in ECM protein expression and modification in tissue. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
12.
Microfluidic spatial and temporal gradient generators have played an important role in many biological assays such as in the analysis of wound healing, inflammation, and cancer metastasis. Chemical gradient systems can also be applied to other fields such as drug design, chemical synthesis, chemotaxis, etc. Microfluidic systems are particularly amenable to gradient formation, as the length scales used in chips enable fluid processes that cannot be conducted in bulk scale. In this review we discuss new microfluidic devices for gradient generation and applications of those systems in cell analysis. 相似文献
13.
Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is powerful in characterizing and identifying bacterial isolates. However, sufficient quantities of bacterial cells are required for generating MALDI mass spectra and a procedure to isolate and enrich target bacteria from sample matrix prior to MALDI-MS analysis is often necessary. In this paper, anion-exchange superparamagnetic nanoparticles (NPs), i.e., fluidMAG-DEAE and fluidMAG-Q, were employed to capture Aeromonas, Salmonella, Pseudomonas, Enterococcus, Bacillus, Staphylococcus and Escherichia coli from aqueous solutions and fresh water. The magnetically isolated bacteria were then characterized by whole cell MALDI-MS. The capture efficiency was found to be dependent on bacterial species, medium pH, the functional group and concentration of the NPs. The experimental results demonstrated that fluidMAG-DEAE and fluidMAG-Q were broad spectrum probes for bacteria. Furthermore, both dead and live bacteria could be captured by the NPs, and the live bacteria captured remained viable. Membrane filtration prior to the magnetic isolation could increase enrichment factor and eliminate potential matrix interference. A detection limit of 1 × 103 cfu/ml was achieved for the bacteria spiked in tap water and reservoir water, and the analytical time was around 2 h. 相似文献
14.
《Electrophoresis》2018,39(12):1443-1451
This paper describes the fabrication of and data collection from two microfluidic devices: a microfluidic thread/paper based analytical device (μTPAD) and 3D microfluidic paper‐based analytical device (μPAD). Flowing solutions of glucose oxidase (GOx), horseradish peroxidase (HRP), and potassium iodide (KI), through each device, on contact with glucose, generated a calibration curve for each platform. The resultant yellow‐brown color from the reaction indicates oxidation of iodide to iodine. The devices were dried, scanned, and analyzed yielding a correlation between yellow intensity and glucose concentration. A similar procedure, using an unknown concentration of glucose in artificial urine, is conducted and compared to the calibration curve to obtain the unknown value. Studies to quantify glucose in artificial urine showed good correlation between the theoretical and actual concentrations, as percent differences were ≤13.0%. An ANN was trained on the four‐channel CMYK color data from 54 μTPAD and 160 μPAD analysis sites and Pearson correlation coefficients of R = 0.96491 and 0.9739, respectively, were obtained. The ANN was able to correctly classify 94.4% (51 of 54 samples) and 91.2% (146 of 160 samples) of the μTPAD and μPAD analysis sites, respectively. The development of this technology combined with ANN should further facilitate the use of these platforms for colorimetric analysis of other analytes. 相似文献
15.
In-channel atom-transfer radical polymerization of thermoset polyester microfluidic devices for bioanalytical applications 总被引:1,自引:0,他引:1
A new technique for polymer microchannel surface modification, called in-channel atom-transfer radical polymerization, has been developed and applied in the surface derivatization of thermoset polyester (TPE) microdevices with poly(ethylene glycol) (PEG). X-ray photoelectron spectroscopy, electroosmotic flow (EOF), and contact angle measurements indicate that PEG has been grafted on the TPE surface. Moreover, PEG-modified microchannels have much lower and more pH-stable EOF, more hydrophilic surfaces and reduced nonspecific protein adsorption. Capillary electrophoresis separation of amino acid and peptide mixtures in these PEG-modified TPE microchips had good reproducibility. Phosducin-like protein and phosphorylated phosducin-like protein were also separated to measure the phosphorylation efficiency. Our results indicate that PEG-grafted TPE microchips have broad potential application in biomolecular analysis. 相似文献
16.
A one‐step matrix application method for MALDI mass spectrometry imaging of bacterial colony biofilms 下载免费PDF全文
Bin Li Troy J. Comi Tong Si Sage J. B. Dunham Jonathan V. Sweedler 《Journal of mass spectrometry : JMS》2016,51(11):1030-1035
Matrix‐assisted laser desorption/ionization imaging of biofilms cultured on agar plates is challenging because of problems related to matrix deposition onto agar. We describe a one‐step, spray‐based application of a 2,5‐dihydroxybenzoic acid solution for direct matrix‐assisted laser desorption/ionization imaging of hydrated Bacillus subtilis biofilms on agar. Using both an optimized airbrush and a home‐built automatic sprayer, region‐specific distributions of signaling metabolites and cannibalistic factors were visualized from B. subtilis cells cultivated on biofilm‐promoting medium. The approach provides a homogeneous, relatively dry coating on hydrated samples, improving spot to spot signal repeatability compared with sieved matrix application, and is easily adapted for imaging a range of agar‐based biofilms. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
17.
Sarah Trimpin 《Journal of mass spectrometry : JMS》2010,45(5):471-485
Progress in research is hindered by analytical limitations, especially in biological areas in which sensitivity and dynamic range are critical to success. Inherent difficulties of characterization associated with complexity arising from heterogeneity of various materials including topologies (isomeric composition) and insolubility also limit progress. For this reason, we are developing methods for total solvent‐free analysis by mass spectrometry consisting of solvent‐free ionization followed by solvent‐free gas‐phase separation. We also recently constructed a novel matrix‐assisted laser desorption ionization (MALDI) source that provides a simple, practical and sensitive way of producing highly charged ions by laserspray ionization (LSI) or singly charged ions commonly observed with MALDI by choice of matrix or matrix preparation. This is the first ionization source with such freedom—an extremely powerful analytical ‘switch’. Multiply charged LSI ions allow molecules exceeding the mass‐to‐charge range of the instrument to be observed and permit for the first time electron transfer dissociation fragment ion analysis. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
18.
We have developed matrix pre‐coated targets for imaging proteins in thin tissue sections by matrix‐assisted laser desorption/ionization mass spectrometry. Gold covered microscope slides were coated with sinapinic acid (SA) in batches in advance and were shown to be stable for over 6 months when kept in the dark. The sample preparation protocol using these SA pre‐coated targets involves treatment with diisopropylethylamine (DIEA)‐H2O vapor, transforming the matrix layer to a viscous ionic liquid. This SA‐DIEA ionic liquid layer extracts proteins and other analytes from tissue sections that are thaw mounted to this target. DIEA is removed by the immersion of the target into diluted acetic acid, allowing SA to co‐crystallize with extracted analytes directly on the target. Ion images (3–70 kDa) of sections of mouse brain and rat kidney at spatial resolution down to 10 µm were obtained. Use of pre‐coated slides greatly reduces sample preparation time for matrix‐assisted laser desorption/ionization imaging while providing high throughput, low cost and high spatial resolution images. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
19.
Matrix assisted laser desorption/ionization (MALDI) applications, such as proteomics, genomics, clinical profiling and MALDI imaging, have created a growing demand for faster instrumentation. Since the commonly used nitrogen lasers have throughput and life span limitations, diode-pumped solid-state lasers are an alternative. Unfortunately this type of laser shows clear performance limitations in MALDI in terms of sensitivity, resolution and ease of use, for applications such as thin-layer sample preparations, acceptance of various matrices (e.g. DHB for glycopeptides) and MALDI imaging. While it is obvious that the MALDI process has some dependence on the characteristics of the laser used, it is unclear which features are the most critical in determining laser performance for MALDI. In this paper we show, for the first time, that a spatially structured laser beam profile in lieu of a Gaussian profile is of striking importance. This result enabled us to design diode-pumped Nd : YAG lasers that on various critical applications perform as well for MALDI as the nitrogen lasers and in some respects even better. The modulation of the beam profile appears to be a new parameter for optimizing the MALDI process. In addition, the results trigger new questions directing us to a better understanding of the MALDI process. 相似文献
20.
A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics 总被引:7,自引:0,他引:7
Suckau D Resemann A Schuerenberg M Hufnagel P Franzen J Holle A 《Analytical and bioanalytical chemistry》2003,376(7):952-965
A new matrix-assisted laser-desorption/ionization time-of-flight/time-of-flight mass spectrometer with the novel "LIFT" technique (MALDI LIFT-TOF/TOF MS) is described. This instrument provides high sensitivity (attomole range) for peptide mass fingerprints (PMF). It is also possible to analyze fragment ions generated by any one of three different modes of dissociation: laser-induced dissociation (LID) and high-energy collision-induced dissociation (CID) as real MS/MS techniques and in-source decay in the reflector mode of the mass analyzer (reISD) as a pseudo-MS/MS technique. Fully automated operation including spot picking from 2D gels, in-gel digestion, sample preparation on MALDI plates with hydrophilic/hydrophobic spot profiles and spectrum acquisition/processing lead to an identification rate of 66% after the PMF was obtained. The workflow control software subsequently triggered automated acquisition of multiple MS/MS spectra. This information, combined with the PMF increased the identification rate to 77%, thus providing data that allowed protein modifications and sequence errors in the protein sequence database to be detected. The quality of the MS/MS data allowed for automated de novo sequencing and protein identification based on homology searching. 相似文献