首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
An ultrasensitive multiplexed immunoassay method was developed at a disposable immunosensor array using mesoporous platinum nanoparticles (M-Pt NPs) as nonenzymatic labels. M-Pt NPs were prepared by ultrasonic method and employed to label the secondary antibody (Ab2) for signal amplification. The immunosensor array was constructed by covalently immobilizing capture antibody (Ab1) on graphene modified screen printed carbon electrodes (SPECs). After the sandwich-type immunoreactions, the M-Pt-Ab2 was bound to immunosensor surface to catalyze the electro-reduction of H2O2 reaction, which produced detectable signals for readout of analytes. Using breast cancer related panel of tumor markers (CA125, CA153 and CEA) as model analytes, this method showed wide linear ranges of over 4 orders of magnitude with the detection limits of 0.002 U mL−1, 0.001 U mL−1 and 7.0 pg mL−1 for CA125, CA153 and CEA, respectively. The disposable immunosensor array possessed excellent clinical value in cancer screening as well as convenient point of care diagnostics.  相似文献   

2.
A sandwich-type electrochemical immunosensor for the detection of carbohydrate antigen 19-9 (CA 19-9) antigen based on the immobilization of primary antibody (Ab1) on three dimensional ordered macroporous magnetic (3DOMM) electrode, and the direct electrochemistry of horseradish peroxidase (HRP) that was used as both the label of secondary antibody (Ab2) and the blocking reagent. The 3DOMM electrode was fabricated by introducing core–shell Au–SiO2@Fe3O4 nanospheres onto the surface of three dimensional ordered macroporous (3DOM) Au electrode via the application of an external magnet. Au nanoparticles functionalized SBA-15 (Au@SBA-15) was conjugated to the HRP labeled secondary antibody (HRP-Ab2) through the Au–SH or Au–NH3+ interaction, and HRP was also used as the block reagent. The formation of antigen–antibody complex made the combination of Au@SBA-15 and 3DOMM exhibit remarkable synergistic effects for accelerating direct electron transfer (DET) between HRP and the electrode. Under the optimal conditions, the DET current signal increased proportionally to CA 19-9 concentration in the range of 0.05 to 15.65 U mL−1 with a detection limit of 0.01 U mL−1. Moreover, the immunosensor showed high selectivity, good stability, satisfactory reproducibility and regeneration. Importantly, the developed method was used to assay clinical serum specimens, achieving a good relation with those obtained from the commercialized electrochemiluminescent method.  相似文献   

3.
A novel photonic suspension array was developed for multiplex immunoassay. The carries of this array were silica colloidal crystal beads (SCCBs). The codes of these carriers are the characteristic reflection peak originated from their structural periodicity, and therefore they do not suffer from fading, bleaching, quenching, and chemical instability. In addition, because no dyes or materials related with fluorescence are included, the fluorescence background of SCCBs is very low. With a sandwich format, the proposed suspension array was used for simultaneous multiplex detection of tumor markers in one test tube. The results showed that the four tumor markers, α-fetoprotein (AFP), carcinoembryonic antigen (CEA), carcinoma antigen 125 (CA 125) and carcinoma antigen 19-9 (CA 19-9) could be assayed in the ranges of 1.0-500 ng mL−1, 1.0-500 ng mL−1, 1.0-500 U mL−1 and 3.0-500 U mL−1 with limits of detection of 0.68 ng mL−1, 0.95 ng mL−1, 0.99 U mL−1 and 2.30 U mL−1 at 3σ, respectively. The proposed array showed acceptable accuracy, detection reproducibility, storage stability and the results obtained were in acceptable agreement with those from parallel single-analyte test of practical clinical sera. This technique provides a new strategy for low cost, automated, and simultaneous multiplex immunoassay.  相似文献   

4.
Mucin-16 (MUC16) is the established ovarian cancer marker used to follow the disease during or after treatment for epithelial ovarian cancer. The emerging science of cancer markers also demands for the new sensitive detection methods. In this work, we have developed an electrochemical immunosensor for antigen MUC16 using gold nanoelectrode ensemble (GNEE) and ferrocene carboxylic acid encapsulated liposomes tethered with monoclonal anti-Mucin-16 antibodies (αMUC16). GNEEs were fabricated by electroless deposition of the gold within the pores of polycarbonate track-etched membranes. Afterwards, αMUC16 were immobilized on preformed self-assembled monolayer of cysteamine on the GNEE via cross-linking with EDC-Sulfo-NHS. A sandwich immunoassay was performed on αMUC16 functionalized GNEE with MUC16 and immunoliposomes. The differential pulse voltammetry was employed to quantify the faradic redox response of ferrocene carboxylic acid released from immunoliposomes. The dose–response curve for MUC16 concentration was found between the range of 0.001–300 U mL−1. The lowest detection limit was found to be 5 × 10−4 U mL−1 (S/N = 3). We evaluated the performance of this developed immunosensor with commercial ELISA assay by comparing results obtained from spiked serum samples and real blood serum samples from volunteers.  相似文献   

5.
Gao X  Zhang Y  Wu Q  Chen H  Chen Z  Lin X 《Talanta》2011,85(4):1980-1985
A simple and controllable one-step electrodeposition method for the preparation of a chitosan-carbon nanotubes-gold nanoparticles (CS-CNTs-GNPs) nanocomposite film was used to fabricate an immunosensor for detection of carcinoembryonic antigen (CEA). The porous three-dimensional CS-CNTs-GNPs nanocomposite film, which offered a large specific surface area for immobilization of antibodies, exhibited improved conductivity, high stability and good biocompatibility. The morphology of the formed nanocomposite film was investigated by scanning electron microscopy (SEM), and the electrochemical behaviors of the immunosensor were characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Under the optimal conditions, the proposed immunosensor could detect CEA in two linear ranges from 0.1 to 2.0 ng mL−1 and from 2.0 to 200.0 ng mL−1, with a detection limit of 0.04 ng mL−1. The immunosensor based on CS-CNTs-GNPs nanocomposite film as the antibody immobilization matrix could exhibit good sensitivity, stability, and reproducibility for the determination of CEA.  相似文献   

6.
In this paper, a simple and sensitive amperometric immunosensor for simultaneous detection of four biomarkers by using distinguishable redox-probes as signal tags was proposed for the first time. In sandwich immunoassay format, four kinds of capture antibodies (C-Ab) were immobilized by gold nanoparticles (AuNPs) electro-deposited on the surface of glass carbon electrode (GCE); four kinds of detection antibodies (D-Ab) labeled with different redox probes (including anthraquinone 2-carboxylic acid (Aq), thionine (Thi), ferrocenecarboxylic acid (Fc) and tris(2,2’-bipyridine-4,4’-dicarboxylic acid) cobalt(III) (Co(bpy)33+)), were combined with 3,4,9,10-perylenetetracarboxylic acid (PTCA), poly(diallyldimethylammonium chloride) (PDDA) and AuNPs functionalized carbon nanotubes, and served as signal tracer. When four target antigens were present, differential pulse voltammetry (DPV) scan exhibited four well-resolved peaks, each peak indicated one antigen, and its intensity was quantitative correlational to the concentration of corresponding analyte. To verify the strategy, four biomarkers for diagnosis of colorectal carcinoma, including carcinoembryonic antigen (CEA), carbohydrate antigen (CA) 19-9 CA125, and CA242, were used as model analytes, the immunosensor exhibited high selectivity and sensitivity, and peak current displayed good linear relationship to logarithm concentration in the ranges from 0.016 to 15 ng mL−1 for CEA; 0.008 to 10 ng mL−1 for CA19-9; 0.012 to 12 ng mL−1 for CA125; 0.010 to 10 ng mL−1 for CA242, and low detection limits of 4.2, 2.8, 3.3 and 3.8 pg mL−1, respectively.  相似文献   

7.
Nanoporous gold (NPG) has recently received considerable attention in analytical electrochemistry because of its good conductivity and large specific surface area. A facile layer-by-layer assembly technique fabricated NPG was used to construct an electrochemical immunosensor for carcinoembryonic antigen (CEA). NPG was fabricated on glassy carbon (GC) electrode by alternatively assembling gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) using 1,4-benzenedimethanethiol as a cross-linker, and then AgNPs were dissolved with HNO3. The thionine was absorbed into the NPG and then gold nanostructure was electrodeposited on the surface through the electrochemical reduction of gold chloride tetrahydrate (HAuCl4). The anti-CEA was directly adsorbed on gold nanostructure fixed on the GC electrode. The linear range of the immunosensor was from 10 pg mL−1 to 100 ng mL−1 with a detection limit of 3 pg mL−1 (S/N = 3). The proposed immunosensor has high sensitivity, wide linear range, low detection limit, and good selectivity. The present method could be widely applied to construct other immunosensors.  相似文献   

8.
A sensitive and label-free electrochemical impedance immunosensor via covalent coupling the antibody with functionalized gold nanoparticles (FAuNP) for probing apolipoprotein A-I was presented. The hybrid gold nanoparticles were prepared with a two-in-one strategy, i.e. via the stepwise employment of self-assembled monolayer (SAM) and sol-gel techniques, to improve the performance of such a label-free immunosensor, which was investigated by electrochemical impedance spectroscopy. It was found that this novel FAuNP immunosensor showed higher protein-loading capacity and better response properties (6-17 times) than that fabricated by normal SAM technique did. The remarkably improved properties of the immunosensor were ascribed to FAuNP with the larger surface-to-volume ratio, more free amino linkage groups, and the lower nonspecific protein adsorption. As a result, the thus-prepared antibody-modified immunosensor showed reproducible (R.S.D. = ±3.2%, n = 10) linear response to apolipoprotein A-I (Apo A-I) antigens in the range of 0.1-10 ng mL−1. The detection limit of this immunosensor was 50 pg mL−1 (corresponding to 1.8 pmol L−1), which was two orders of magnitude lower than that of the traditional methods. These results exhibited the novel immunosensor had a high sensitivity, stability and selectivity for the determination of Apo A-I, especially in clinic microanalysis.  相似文献   

9.
In this paper, a novel, low-cost electrochemiluminescence (ECL) immunosensor using core–shell Fe3O4–Au magnetic nanoparticles (AuMNPs) as the carriers of the primary antibody of carbohydrate antigen 125 (CA125) was designed. Graphene sheet (GS) with property of good conductivity and large surface area was a captivating candidate to amplify ECL signal. We successively synthesized functionalized GS by loading large amounts of quantum dots (QDs) onto the poly (diallyldimethyl-ammonium chloride) (PDDA) coated graphene sheet (P-GS@QDs) via self-assembly electrostatic reactions, which were used to label secondary antibodies. The ECL immunosensors coupled with a microfluidic strategy exhibited a wide detection range (0.005–50 U mL−1) and a low detection limit (1.2 mU mL−1) with the help of an external magnetic field to gather immunosensors. The method was evaluated with clinical serum sample, receiving good correlation with results from commercially available analytical procedure.  相似文献   

10.
In this work, a novel streptavidin functionalized graphene oxide/Au nanoparticles (streptavidin/GO/AuNPs) composite is prepared and for the first time used to construct sensitive chemiluminescent immunosensor for the detection of tumor marker. The streptavidin/GO/AuNPs composite and the immunosensor are characterized using scanning electron microscopy, static water contact angle measurement and electrochemical impedance spectroscopy. The biofunctionalized composite has large reactive surface area and excellent biocompatibility, thus the capture antibody can be efficiently immobilized on its surface based on the highly selective recognition of streptavidin to biotinylated antibody. Using α-fetoprotein (AFP) as a model, the proposed chemiluminescent immunosensor shows a wide linear range from 0.001 to 0.1 ng mL−1 with an extremely low detection limit down to 0.61 pg mL−1. The resulting AFP immunosensor shows high detection sensitivity, fast assay speed, acceptable detection and fabrication reproducibility, good specificity and stability. The assay results of serum samples with the proposed method are in an acceptable agreement with the reference values. This work provides a promising biofunctionalized nanostructure for sensitive biosensing applications.  相似文献   

11.
A double electrochemical covalent coupling method based on click chemistry and diazonium chemistry for the fabrication of sensitive amperometric immunosensor was developed. As a proof-of-concept, a designed alkyne functionalized human IgG was used as a capture antibody and a HRP-labeled rabbit anti-goat IgG was used as signal antibody for the determination of the anti-human IgG using the sandwich model. The immunosensor was fabricated by electrochemically grafting a phenylazide on the surface of a glassy carbon electrode, and then, by coupling the alkyne functionalized human IgG with the phenylazide group through an electro-click chemistry in the presence of Cu(II). The amperometric measurement for the determination of the anti-human IgG was performed after the fabricated immunosensor was incubated with the target anti-human IgG and then with the HRP-labeled anti-goat IgG at −0.25 V in 0.10 M PBS (pH 7.0) containing 0.1 mM hydroquinone and 2.0 mM H2O2. The results showed that the increased current was linear with the logarithm of the concentration of the anti-human IgG in the range from 1.0 × 10−10 g mL−1 to 1.0 × 10−8 g mL−1 with a detection limit of 3 × 10−11 g mL−1. Furthermore, the feasibility of the double electrochemical covalent coupling method proposed in this work for fabricating the amperometric immunosensor array was explored. This work demonstrates that the double electrochemical covalent coupling method is a promising approach for the fabrication of the immunosensor and immunosensor array.  相似文献   

12.
In the presented work, a disposable immunosensor for the detection of testosterone, an endogenous steroid hormone, in bovine urine has been developed using screen-printed electrodes (SPEs). Due to concerns over the use of steroid hormones as growth promoters, the EU prohibits their use in food producing animals. Consequently, rigorous screening procedures have been implemented in all member states to detect the illegal administration of such compounds. Competitive immunoassays were developed, initially by enzyme linked immunosorbent assay (ELISA), and subsequently transferred to an electrochemical immunosensor format using disposable screen-printed carbon electrodes. Horseradish peroxidase (HRP) was the enzyme label of choice and chronoamperometric detection was carried out using a tetramethylbenzidine/hydrogen peroxide (TMB/H2O2) substrate system, at +100 mV. The EC50 values obtained for the assay in buffer and urine gave relatively comparable results, 710 pg mL−1 and 960 pg mL−1, respectively. The linear range obtained for the assay in buffer extended from 0.03 ng mL−1 to 40 ng mL−1; while that in urine ranged from 0.03 ng mL−1 to 1.6 ng mL−1. The corresponding limits of detection (LOD) in buffer and urine were 26 pg mL−1 and 1.8 pg mL−1. Cross reactivity profiles of the antibody have been examined, with notable cross reactivities with 19-nortestosterone (11.6%) and boldenone (9.86%). Precision studies for the sensor demonstrated adequate reproducibility (CV < 13%, n = 3) and repeatability (CV < 9%, n = 3). Recovery data obtained showed good agreement between spiking studies and known concentrations of analyte. Sensors showed stability for 4 days at +4 °C. A sensitive, highly specific, inexpensive, disposable immunosensor, showing excellent overall performance for the detection of testosterone in bovine urine, has been developed.  相似文献   

13.
Three-dimensional macroporous gold nanoparticles/graphene composites (3D-AuNPs/GN) were synthesized through a simple two-step process, and were used to modify working electrode sensing platform, based on which a facile electrochemical immunoassay for sensitive detection of carcinoembryonic antigen (CEA) in human serum was developed. In the proposed 3D-AuNPs/GN, AuNPs were distributed not just on the surface, but also on the inside of graphene. And this distribution property increased the area of sensing surface, resulting in capturing more primary antibodies as well as improving the electronic transmission rate. In the presence of CEA, a sandwich-type immune composite was formed on the sensing platform, and the horseradish peroxidase-labeled anti-CEA antibody (HRP-Ab2)/thionine/nanoporous silver (HRP-Ab2/TH/NPS) signal label was captured. Under optimal conditions, the electrochemical immunosensor exhibited excellent analytical performance: the detection range of CEA is from 0.001 to 10 ng mL−1 with low detection limit of 0.35 pg mL−1 and low limit of quantitation (LOQ) of 0.85 pg mL−1. The electrochemical immunosensor showed good precision, acceptable stability and reproducibility, and could be used for the detection of CEA in real samples. The proposed method provides a promising platform of clinical immunoassay for other biomolecules  相似文献   

14.
A new kind of signal amplification strategy based on ferrocene (Fc) incorporated polystyrene spheres (PS-Fc) was proposed. The synthesized PS-Fc displayed narrow size distribution and good stability. PS-Fc was applied as label to develop immunosensors for prostate specific antigen (PSA) after the typical sandwich immunoreaction by linking anti-PSA antibody (Ab2) onto PS-Fc. After the fabrication of the immunosensor, tetrahydrofuran (THF) was dropped to dissolve PS and release the contained Fc for the following stripping voltammetric detection. PS-Fc as a new electrochemical label prevented the leakage of Fc and greatly amplified the immunosensor signal. In addition, the good biocompatibility of PS could maintain the bioactivity of the antibodies. The response current was linear to the logarithm of PSA concentration in the range from 0.01 ng mL−1 to 20 ng mL−1 with a detection limit of 1 pg mL−1. The immunosensor results were validated through the detection of PSA in serum samples with satisfactory results.  相似文献   

15.
A novel electrochemical immunosensor based on double signal amplification of enzyme-encapsulated liposomes and biocatalytic metal deposition was developed for the detection of human prostate specific antigen (PSA). Alkaline phosphatase (ALP)-encapsulated and detection antibody-functionalized liposomes were first prepared and used as the detection reagent. In the sandwich immunoassay, the model analyte PSA was first captured by anti-PSA capture antibody immobilized on the electrode and then sandwiched with the functionalized liposomes. The bound liposomes were then lysed with surfactant to release the encapsulated ALP, which served as secondary signal amplification means. ALP on the electrode surface initiated the hydrolysis of ascorbic acid 2-phosphate (AA-p) to produce ascorbic acid. The latter, in turn, reduced silver ions on the electrode surface, leading to deposition of the metal silver on the electrode surface. Linear sweep voltammetry (LSV) was chosen to detect the amount of the deposited silver. The results showed that the anodic stripping peak current was linearly dependent on the PSA concentration in the range of 0.01-100 ng mL−1, and a detection limit as low as 0.007 ng mL−1 can be obtained. Since the cut-off value of human PSA is 4 ng mL−1, the proposed electrochemical immunosensor would be expected to gain widespread applications for the detection of PSA in clinical diagnosis.  相似文献   

16.
An ultrasensitive electrochemiluminescence (ECL) immunosensor based on CdSe quantum dots (QDs) has been designed for the detection of clenbuterol. The immunosensor was fabricated by layer by layer and characterized with atomic force microscopic images (AFM) and electrochemical impedance spectra (EIS). In oxygen-saturated pH = 9.0 Tris-HCl buffer, a strong ECL emission of QDs could be observed during the cathodic process due to the H2O2 product from electrochemical reduction of dissolved oxygen. Upon the formation of immunocomplex, the second antibody labeled with horseradish peroxidase was simply immobilized on the electrode surface. The ECL emission decreased since steric hindrance of the immunocomplex slowed down the electron-transfer speed of dissolved oxygen, and also could be greatly amplified by an enzymatic cycle to consume the self-produced coreactant. Using clenbuterol as model analyte, the ECL intensity was determined by the concentration of competitive immunoassay of clenbuterol with a wide calibration in the range of 0.05 ng mL−1 to 1000 ng mL−1, and a low detection limit was 0.02 ng mL−1. The immunosensor shows good stability and fabrication reproducibility. It was applied to detecting practical samples with the satisfactory results. This immunosensing strategy opens a new avenue for detection of residue and application of QDs in ECL biosensing.  相似文献   

17.
For the first time, a simple and highly sensitive label-free electrochemical carcinoembryonic antigen (CEA) immunosensor based on a cryogel electrode has been developed and tested. The as-prepared nanocomposite combined the advantages of the graphene, AuNPs and chitosan (AuNPs–GP–CS) together with the ease of preparing a cryogel coupled to a silver deposition, to act as a redox mediator, on a Au electrode. Under the optimal conditions, the decrease of the cyclic voltammetry (CV) silver peak current was proportional to the CEA concentration over a range of from 1.0 × 10−6 to 1.0 ng mL−1 with a detection limit of 2.0 × 10−7 ng mL−1. This AuNPs–GP–CS cryogel electrode gave a 1.7 times higher sensitivity and 25 times lower detection limit than the non-cryogel electrode. Moreover, the proposed electrochemical immunosensor exhibited good selectivity, reproducibility and stability. When applied to analyse clinical serum samples, the data determined by the developed immunosensor were in agreement with those obtained by the current hospital analysis system (enzyme linked fluorescent assay) (P > 0.05), to indicate that the immunosensor would be potentially useful for clinical diagnostics.  相似文献   

18.
A new and disposable electrochemical immunosensor was designed for detection of alpha-fetoprotein (AFP), as a model analyte, with sensitivity enhancement based on enzyme-catalyzed silver deposition onto irregular-shaped gold nanoparticles (ISGNPs). The assay was carried out with a sandwich-type immunoassay protocol by using ISGNP-labeled anti-AFP antibodies conjugated with alkaline phosphatase (ALP–Ab2) as detection antibodies. The enzymatically catalytic deposition of silver on the electrode could be measured by stripping analysis in KCl solution due to the Ag/AgCl solid-state voltammetric process. Several labeling protocols including spherical gold nanoparticle-labeled ALP–Ab2 and ISGNP-labeled ALP–Ab2 were investigated for determination of AFP, and improved analytical properties were achieved with the ISGNP labeling. With the ISGNP labeling method, the effects of incubation time and incubation temperature for antigen-antibody reaction, and deposition time of silver on the current responses of the electrochemical immunosensors were also monitored. Under optimal conditions, the electrochemical immunosensor exhibited a wide dynamic range from 0.01 ng mL−1 to 200 ng mL−1 with a detection limit of 5.0 pg mL−1 AFP. The immunosensor displayed a good stability and acceptable reproducibility and accuracy. No significant differences at the 95% confidence level were encountered in the analysis of 10 clinical serum samples between the developed immunoassay and the commercially available electrochemiluminescent method for determination of AFP.  相似文献   

19.
A simple and sensitive electrochemical immunoassay protocol was developed for the detection of carcinoembryonic antigen (CEA) using nanosilver-doped DNA polyion complex membrane (PIC) as sensing interface. To construct such an immunosensor, double-stranded DNA was initially assembled onto the surface of thionine/Nafion-modified screen-printed carbon electrode to adsorb silver ions with positive charges, then silver ions were reduced to nanosilver particles with the aid of NaBH4, and then anti-CEA antibodies were immobilized on the nanosilver surface. Gold nanoparticles conjugated with horseradish peroxidase-labeled anti-CEA were employed as signal antibodies for the detection of CEA with a sandwich-type assay format. Under optimal conditions, the immunosensor exhibited a dynamic range of 0.03-32 ng mL−1 with a low detection limit of 10 pg mL−1 CEA. Intra- and inter-assay imprecision (CVs) were <9.5% and 6.5%, respectively. The response could remain 90.1% of the original current at 30th day. 50 real samples were evaluated using the immunosensor and the enzyme-linked immunosorbent assay, respectively, and received in accordance with those two methods.  相似文献   

20.
A novel, sensitive electrochemical immunosensor for simultaneous determination of squamous cell carcinoma associated antigen (SCC-Ag) and carcinoembryonic antigen (CEA) for the combined diagnosis of cervical cancer was designed. The amplification strategy for electrochemical immunoassay was based on poly[3-(1,1′-dimethyl-4-piperidine-methylene) thiophene-2,5-diylchloride] (PDPMT-Cl) and functionalized mesoporous ferroferric oxide nanoparticles (Fe3O4 NPs). PDPMT-Cl dispersed in chitosan solution with enhanced electrical conductivity and solubility was used as matrices to immobilize the first antibodies. Different redox probes (thionine (Th) and ferrocenecarboxylic acid (Fca)) functionalized Fe3O4 NPs incubated with two kinds of secondary antibodies to fabricate the labels. Using an electrochemical analysis technique, two well-separated peaks were generated by Th and Fca, making the simultaneous detection of two analytes on the electrode possible. Under optimized conditions, this method showed wide linear ranges of three orders of magnitude with the detection limits of 4 pg mL−1 and 5 pg mL−1, respectively. The disposable immunosensor possessed excellent clinical value in cervical cancer screening as well as convenient point-of-care diagnostics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号